Skip to content

Latest commit

 

History

History
97 lines (82 loc) · 3.67 KB

README.md

File metadata and controls

97 lines (82 loc) · 3.67 KB

PyPhoenix

The Python versions of the Phoenix Ascending 2.201 and Bad Ass B-Bands indicators can be found in this repository. This code is written for personal use and analysis based on data analysis tools in Python.

Important Note:

How to use:

Prerequirements:

Check that the packages listed in requirements.txt are installed on your system or environment.

Usage:

  1. First, clone the package in your system:
git clone https://github.com/siniorone/PyPhoenix.git
  1. To use PyPhoenix go to the main repo directory, run the following command in your terminal to add src to your PYTHONPATH:
cd PyPhoenix
export PYTHONPATH=${PWD}
  1. Then run run.py file:
python src/run.py

Explore the code's functions:

  • First of all we need to import the main class:
from src.phoenix import Phoenix
  • Then we make an object from Phoenix:
btc = Phoenix("BTC-USD", "2021-02-06", "2022-02-06")
  • Use the .graph() method to display an interactive graph:
btc.graph()

Interactive Graph

  • Use save=True to save the graph as a photo at the same time:
btc.graph(save=True)
  • If you want only the phoenix indicator to be displayed, you can use the following arguments:
btc.graph(phoenix=True, chart=False)
  • Method .graph2() allows you to use another visualization that makes use of Matplotlib and seaborn, and save the result as a high-quality image:
btc.graph2(save=True)

Matplotlib Visualization

  • To get all the data of indicators and prices in the form of a pandas.DataFrame, you can use method .to_dataframe():
df = btc.to_dataframe()
df.shape
# Output: (366, 23)
df.columns

# Output: Index(['open', 'high', 'low', 'close', 'hl2', 'hlc3', 'ohlc4', 'volume',
#      'green', 'red', 'blue', 'energy', 'basis', 'u1std', 'l1std', 'u16std',
#       'l16std', 'u26std', 'l26std', 'u36std', 'l36std', 'u46std', 'l46std'],
#     dtype='object')
df.index

# DatetimeIndex(['2021-02-05', '2021-02-06', '2021-02-07', '2021-02-08',
#               '2021-02-09', '2021-02-10', '2021-02-11', '2021-02-12',
#               '2021-02-13', '2021-02-14',
#               ...
#               '2022-01-27', '2022-01-28', '2022-01-29', '2022-01-30',
#               '2022-01-31', '2022-02-01', '2022-02-02', '2022-02-03',
#               '2022-02-04', '2022-02-05'],
#              dtype='datetime64[ns]', name='Date', length=366, freq=None)
  • You can modify the get_stock_data() function in the src/utils/dataminer.py file base on your need and according to your conditions, as long as the output of the function is a pandas.DataFrame with an index of Date and its columns Open, High, Low, Close, Volume, the code will run correctly.
Index Open High Low Close Volume
Date
2021-02-05 36931.546 38225.906 36658.761 38144.308 58598066
... ... ... ... ... ...