diff --git a/R/plot_cit_gsa.R b/R/plot_cit_gsa.R new file mode 100644 index 0000000..fec567d --- /dev/null +++ b/R/plot_cit_gsa.R @@ -0,0 +1,188 @@ +############## Fonction générale graph ccdf pour 1 gene set + + +# Paramètres ---- + + +# ccdf : object from ccdf function +# ===> the names of the list elements have to be the names of the genes +# ===> si le passe dans la fonction direct va être trop long, mieux de le faire avant + +# ligne 25 +# Severity ? comment récup nom colonne veux : pour la légende pas le choix de demander à un moment : faire plus tard +# ligne 51 : aura pb si X n'est pas une variable à levels donc attention +# ggplot : légende titre + légende trop récis à l'appli + +plot_cit_gsa <- function(ccdf, X, number_y=length(ccdf[[1]]$y)){ #method(median, mean), space_y=FALSE mettre quand aura parallélisé la fonction, + # bof number_y = ccdf + #pas besoin de Y comme calcule ccdf avant + + + genes <- names(ccdf) + + # Create data frame with all the ccdf ---- + data_gene <- do.call(rbind, lapply(genes, function(name) { + x <- ccdf[[name]] + df <- cbind.data.frame(x$cdf, x$ccdf, x$x, x$y) + colnames(df) <- c("cdf", "ccdf", "x", "y") # Severity ? comment récup nom colonne veux : pour la légende pas le choix + df$Gene <- rep(name, nrow(df)) + return(df) + })) + + sev <- unique(data_gene$x) + + # Complete data if no values for some y ---- + data_gene_sep <- data_gene%>%group_by(Gene,x)%>%group_split() # separate the table by genes and severity + + new_data_gene_sep <- lapply(data_gene_sep, function(df) { + # max value of current y + max_y_cur <- max(unique(df$y)) + # max value of total y + max_y_all <- max(unique(data_gene$y)) + + # all the y that are between max current y value and max total y value + y_differ_data <- setdiff(data_gene$y, df$y) # y values that are not in current data + miss_y <- subset(y_differ_data, y_differ_data >= max_y_cur & y_differ_data <= max_y_all) # y values that are not in current data (previous) and between the 2 max + n_miss_y <- length(miss_y) + + # add the new y in the data + affect the max value of the ccdf to these y + # WARNING : ccdf trié pas y ! + if (n_miss_y != 0){ + df <- data.frame(cbind(rep(max(df$cdf),n_miss_y), + rep(max(df$ccdf),n_miss_y), + rep(df$x[1],n_miss_y), miss_y, + rep(df$Gene[1],n_miss_y))) + colnames(df) <- c("cdf","ccdf","x","y","Gene") + level <- + label <- + df$x <- factor(df$x, levels = rep(1:length(levels(data_gene$x))) , labels = levels(data_gene$x) ) #, labels = c("ITU", "NITU", "Mild")) # AURA PB si x n'est pas une variable avec des levels + } else{ + df <- 0 + } + return(df) + }) + + # Combine the data set + final_data <- do.call(rbind,lapply(gene, function(name){ + # if some genes doesn't have missing y values + no_zero <- do.call(rbind,Filter(function(x) {!is.numeric(x) || !all(x == 0)}, new_data_gene_sep)) + # new dataset completed + df <- rbind(data_gene[data_gene$Gene==name,], no_zero[no_zero$Gene==name,]) + df$y <- as.numeric(df$y) + df$cdf <- as.numeric(df$cdf) + df$ccdf <- as.numeric(df$ccdf) + return(df) + })) + + # Thresholds ---- + Y_after <- final_data$y + # y value for each thresholds + y_after <- seq(from = ifelse(length(which(Y_after==0))==0, min(Y_after), min(Y_after[-which(Y_after==0)])), + to = max(Y_after[-which.max(as.matrix(Y_after))]), length.out = number_y) + #p_after <- length(y_after) + # index thresholds + #index_jumps_after <- sapply(y_after[-p_after], function(i){sum(Y_after <= i)}) + + seuils <- c(0,y_after) + + + # Compute the median ---- + med <- lapply(sev, function(x){ + med <- rep(NA, number_y) + filtre_x <- final_data$x == x + filtre_row_i0 <- final_data$y >= seuils[1] & final_data$y < seuils[1+1] + indices0 <- which(filtre_x & filtre_row_i0) + med[1] <- median(final_data$ccdf[indices0]) + + for (i in 2:length(seuils)){ + + filtre_row_i <- final_data$y >= seuils[i] & final_data$y < seuils[i+1] + indices <- which(filtre_x & filtre_row_i) + + med[i] <- median(final_data$ccdf[indices]) + + ref_value <- med[i-1] + range_value <- final_data[filtre_x & filtre_row_i, ]$ccdf + + closest_index <- min(which(range_value > ref_value)) + closest_value <- range_value[closest_index] + + if (med[i] < med[i-1] & closest_index != Inf ){ # force monotony when we can, if no values > previous median leave the current median + med[i] <- closest_value + } + } + med <- data.frame(med[1:number_y]) + med$y <- y_after + med$x <- x + names(med)[1] <- "ccdf" + + return(med) + }) + browser() + # Replace values with the max : if some values are below the max after it + replace_max <- lapply(med, function(m){ + ind_max <- which.max(m$ccdf) + m[ind_max:nrow(m),]$ccdf <- max(m$ccdf) + return(m) + }) + + # Step function : add the ccdf to the y values that are not a thresholds + step_function <- lapply(replace_max, function(df){ + # y values that are not in the data of the thresholds + new_y <- data.frame(setdiff(final_data$y, df$y)) ; colnames(new_y) <- "y" + # separate the values between the intervals of the thresholds + intervalle_indices <- findInterval(new_y$y, df$y, left.open = TRUE) + indices_int <- intervalle_indices+1 + + new_y$ccdf <- df$ccdf[indices_int] + new_y$x <- unique(df$x) + + return(new_y) + }) + + + # Data final ----- + data_med <- rbind(do.call(rbind,step_function),do.call(rbind,med)) + + + + # Data modified for the legend + data_med$Gene <- "all" + data_med$Legend <- "Gene set summary" + + data_gene <- data_gene[-1] + data_gene$Legend <- "Genes" + + + comb_data <- rbind(data_gene,data_med) + + + # Plot ----- + ggplot(data = comb_data, aes(x = y, color=x, y = ccdf,linetype = Legend, size=Legend)) + + geom_line(aes(group = interaction(Gene,x))) + + scale_size_manual(values = c(0.8,0.2)) + # change taille lignes selon variable dans aes(size) + #scale_color_manual(values = c("ITU" = "brown3", "NITU" = "darkgoldenrod1", "Mild"="chartreuse3")) + # pécis pour ces données + labs(x = "Gene expression") + + theme_minimal() + +} + + + +plot_cit_gsa(ccdf_gs2_X_space, X = data.frame(X=factor(covid,levels=c("ITU","NITU","Mild"))[keep_cluster]) , number_y=60) + +# faire broser pour voir pourquoi tombe + + + + + + + + + + + + + +