forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
65 lines (51 loc) · 2.19 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
from tqdm import tqdm
from itertools import chain
from torch.utils.data import Dataset
class Concatenator(object):
def __init__(self, chunk_size=2048):
self.chunk_size=chunk_size
self.residual = {"input_ids": [], "attention_mask": []}
def __call__(self, batch):
concatenated_samples = {
k: v + list(chain(*batch[k])) for k, v in self.residual.items()
}
total_length = len(concatenated_samples[list(concatenated_samples.keys())[0]])
if total_length >= self.chunk_size:
chunk_num = total_length // self.chunk_size
result = {
k: [
v[i : i + self.chunk_size]
for i in range(0, chunk_num * self.chunk_size, self.chunk_size)
]
for k, v in concatenated_samples.items()
}
self.residual = {
k: v[(chunk_num * self.chunk_size) :]
for k, v in concatenated_samples.items()
}
else:
result = concatenated_samples
self.residual = {k: [] for k in concatenated_samples.keys()}
result["labels"] = result["input_ids"].copy()
return result
class ConcatDataset(Dataset):
def __init__(self, dataset, chunk_size=4096):
self.dataset = dataset
self.chunk_size = chunk_size
self.samples = []
buffer = {
"input_ids": [],
"attention_mask": [],
"labels": [],
}
for sample in tqdm(self.dataset, desc="Preprocessing dataset"):
buffer = {k: v + sample[k] for k,v in buffer.items()}
while len(next(iter(buffer.values()))) > self.chunk_size:
self.samples.append({k: v[:self.chunk_size] for k,v in buffer.items()})
buffer = {k: v[self.chunk_size:] for k,v in buffer.items()}
def __getitem__(self, idx):
return self.samples[idx]
def __len__(self):
return len(self.samples)