forked from meta-llama/llama-cookbook
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathchat_completion.py
129 lines (112 loc) · 5.38 KB
/
chat_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# from accelerate import init_empty_weights, load_checkpoint_and_dispatch
import fire
import torch
import os
import sys
import warnings
from typing import List
from peft import PeftModel, PeftConfig
from transformers import LlamaConfig, LlamaTokenizer, LlamaForCausalLM
from safety_utils import get_safety_checker
from model_utils import load_model, load_peft_model
from chat_utils import read_dialogs_from_file, format_tokens
def main(
model_name,
peft_model: str=None,
quantization: bool=False,
max_new_tokens =256, #The maximum numbers of tokens to generate
min_new_tokens:int=0, #The minimum numbers of tokens to generate
prompt_file: str=None,
seed: int=42, #seed value for reproducibility
safety_score_threshold: float=0.5,
do_sample: bool=True, #Whether or not to use sampling ; use greedy decoding otherwise.
use_cache: bool=True, #[optional] Whether or not the model should use the past last key/values attentions Whether or not the model should use the past last key/values attentions (if applicable to the model) to speed up decoding.
top_p: float=1.0, # [optional] If set to float < 1, only the smallest set of most probable tokens with probabilities that add up to top_p or higher are kept for generation.
temperature: float=1.0, # [optional] The value used to modulate the next token probabilities.
top_k: int=50, # [optional] The number of highest probability vocabulary tokens to keep for top-k-filtering.
repetition_penalty: float=1.0, #The parameter for repetition penalty. 1.0 means no penalty.
length_penalty: int=1, #[optional] Exponential penalty to the length that is used with beam-based generation.
enable_azure_content_safety: bool=False, # Enable safety check with Azure content safety api
enable_sensitive_topics: bool=False, # Enable check for sensitive topics using AuditNLG APIs
enable_saleforce_content_safety: bool=True, # Enable safety check woth Saleforce safety flan t5
**kwargs
):
if prompt_file is not None:
assert os.path.exists(
prompt_file
), f"Provided Prompt file does not exist {prompt_file}"
dialogs= read_dialogs_from_file(prompt_file)
elif not sys.stdin.isatty():
dialogs = "\n".join(sys.stdin.readlines())
else:
print("No user prompt provided. Exiting.")
sys.exit(1)
print(f"User dialogs:\n{dialogs}")
print("\n==================================\n")
# Set the seeds for reproducibility
torch.cuda.manual_seed(seed)
torch.manual_seed(seed)
model = load_model(model_name, quantization)
if peft_model:
model = load_peft_model(model, peft_model)
tokenizer = LlamaTokenizer.from_pretrained(model_name)
tokenizer.add_special_tokens(
{
"pad_token": "<PAD>",
}
)
chats = format_tokens(dialogs, tokenizer)
with torch.no_grad():
for idx, chat in enumerate(chats):
safety_checker = get_safety_checker(enable_azure_content_safety,
enable_sensitive_topics,
enable_saleforce_content_safety,
)
# Safety check of the user prompt
safety_results = [check(dialogs[idx][0]["content"]) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print(f"User prompt deemed safe.")
print("User prompt:\n", dialogs[idx][0]["content"])
print("\n==================================\n")
else:
print("User prompt deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
print("Skipping the inferece as the prompt is not safe.")
sys.exit(1) # Exit the program with an error status
tokens= torch.tensor(chat).long()
tokens= tokens.unsqueeze(0)
tokens= tokens.to("cuda:0")
outputs = model.generate(
tokens,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=top_p,
temperature=temperature,
use_cache=use_cache,
top_k=top_k,
repetition_penalty=repetition_penalty,
length_penalty=length_penalty,
**kwargs
)
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
# Safety check of the model output
safety_results = [check(output_text) for check in safety_checker]
are_safe = all([r[1] for r in safety_results])
if are_safe:
print("User input and model output deemed safe.")
print(f"Model output:\n{output_text}")
print("\n==================================\n")
else:
print("Model output deemed unsafe.")
for method, is_safe, report in safety_results:
if not is_safe:
print(method)
print(report)
if __name__ == "__main__":
fire.Fire(main)