-
Notifications
You must be signed in to change notification settings - Fork 6
/
train.py
executable file
·108 lines (86 loc) · 4.37 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
r""" PATNet training (validation) code """
import sys
sys.path.insert(0, "../")
import argparse
import torch.optim as optim
import torch.nn as nn
import torch
from model.patnet import PATNetwork
from common.logger import Logger, AverageMeter
from common.evaluation import Evaluator
from common import utils
from data.dataset import FSSDataset
def train(epoch, model, dataloader, optimizer, training):
r""" Train PATNet """
# Force randomness during training / freeze randomness during testing
utils.fix_randseed(None) if training else utils.fix_randseed(0)
model.module.train_mode() if training else model.module.eval()
average_meter = AverageMeter(dataloader.dataset)
# if training:
for idx, batch in enumerate(dataloader):
# 1. PATNetworks forward pass
batch = utils.to_cuda(batch)
logit_mask = model(batch['query_img'], batch['support_imgs'].squeeze(1), batch['support_masks'].squeeze(1))
pred_mask = logit_mask.argmax(dim=1)
# 2. Compute loss & update model parameters
loss = model.module.compute_objective(logit_mask, batch['query_mask'])
if training:
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 3. Evaluate prediction
area_inter, area_union = Evaluator.classify_prediction(pred_mask, batch)
average_meter.update(area_inter, area_union, batch['class_id'], loss.detach().clone())
average_meter.write_process(idx, len(dataloader), epoch, write_batch_idx=50)
# Write evaluation results
average_meter.write_result('Training' if training else 'Validation', epoch)
avg_loss = utils.mean(average_meter.loss_buf)
miou, fb_iou = average_meter.compute_iou()
return avg_loss, miou, fb_iou
if __name__ == '__main__':
# Arguments parsing
parser = argparse.ArgumentParser(description='Cross-Domain Few-Shot Semantic Segmentation Pytorch Implementation')
parser.add_argument('--datapath', type=str, default='../VOCdevkit')
parser.add_argument('--benchmark', type=str, default='pascal')
parser.add_argument('--logpath', type=str, default='test_case')
parser.add_argument('--bsz', type=int, default=2)
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--niter', type=int, default=2000)
parser.add_argument('--nworker', type=int, default=0)
parser.add_argument('--fold', type=int, default=4, choices=[0, 1, 2, 3, 4])
parser.add_argument('--backbone', type=str, default='resnet50', choices=['vgg16', 'resnet50'])
args = parser.parse_args()
Logger.initialize(args, training=True)
# Model initialization
model = PATNetwork(args.backbone)
Logger.log_params(model)
# Device setup
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
Logger.info('# available GPUs: %d' % torch.cuda.device_count())
model = nn.DataParallel(model)
model.to(device)
# Helper classes (for training) initialization
optimizer = optim.Adam([{"params": model.parameters(), "lr": args.lr}])
Evaluator.initialize()
# Dataset initialization
FSSDataset.initialize(img_size=400, datapath=args.datapath)
dataloader_trn = FSSDataset.build_dataloader(args.benchmark, args.bsz, args.nworker, args.fold, 'trn')
FSSDataset.initialize(img_size=400, datapath='path_to_your_dataset')
dataloader_val = FSSDataset.build_dataloader('fss', args.bsz, args.nworker, '0', 'val')
# Train HSNet
best_val_miou = float('-inf')
best_val_loss = float('inf')
for epoch in range(args.niter):
trn_loss, trn_miou, trn_fb_iou = train(epoch, model, dataloader_trn, optimizer, training=True)
with torch.no_grad():
val_loss, val_miou, val_fb_iou = train(epoch, model, dataloader_val, optimizer, training=False)
# Save the best model
if val_miou > best_val_miou:
best_val_miou = val_miou
Logger.save_model_miou(model, epoch, val_miou)
Logger.tbd_writer.add_scalars('data/loss', {'trn_loss': trn_loss, 'val_loss': val_loss}, epoch)
Logger.tbd_writer.add_scalars('data/miou', {'trn_miou': trn_miou, 'val_miou': val_miou}, epoch)
Logger.tbd_writer.add_scalars('data/fb_iou', {'trn_fb_iou': trn_fb_iou, 'val_fb_iou': val_fb_iou}, epoch)
Logger.tbd_writer.flush()
Logger.tbd_writer.close()
Logger.info('==================== Finished Training ====================')