-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_net.py
289 lines (257 loc) · 10.3 KB
/
train_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import warnings
import copy
import itertools
import logging
import os
from collections import OrderedDict, defaultdict
from typing import Any, Dict, List, Set
import detectron2.utils.comm as comm
import torch
from detectron2.projects.deeplab import add_deeplab_config, build_lr_scheduler
from detectron2.solver.build import maybe_add_gradient_clipping
from detectron2.utils.logger import setup_logger
from tabulate import tabulate
import logging
from collections import OrderedDict
from typing import List
warnings.filterwarnings("ignore", category=UserWarning, module="torch.nn.parallel")
from detectron2.utils.events import EventStorage
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import get_cfg
from detectron2.data import MetadataCatalog
from detectron2.engine import (
DefaultTrainer, AMPTrainer,
default_argument_parser,
default_setup,
launch,
)
from detectron2.evaluation import (
CityscapesSemSegEvaluator,
DatasetEvaluators,
SemSegEvaluator,
verify_results,
)
from ebseg import (
MaskFormerSemanticDatasetMapper,
SemanticSegmentorWithTTA,
add_ebseg_config,
)
from ebseg.data import build_detection_test_loader, build_detection_train_loader
from ebseg.utils import WandbWriter, setup_wandb
import ebseg.model.mask2former.modeling
from ebseg.model import EBSeg
class Trainer(DefaultTrainer):
def __init__(self, cfg):
super().__init__(cfg)
self.evaluator = None
self.cfg = cfg
def build_writers(self):
writers = super().build_writers()
# use wandb writer instead.
writers[-1] = WandbWriter()
return writers
@classmethod
def build_evaluator(cls, cfg, dataset_name, output_folder=None):
if output_folder is None:
output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
evaluator_list = []
evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
# semantic segmentation
if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
evaluator_list.append(
SemSegEvaluator(
dataset_name,
distributed=True,
output_dir=output_folder,
)
)
if evaluator_type == "cityscapes_sem_seg":
assert (
torch.cuda.device_count() > comm.get_rank()
), "CityscapesEvaluator currently do not work with multiple machines."
return CityscapesSemSegEvaluator(dataset_name)
if len(evaluator_list) == 0:
raise NotImplementedError(
"no Evaluator for the dataset {} with the type {}".format(
dataset_name, evaluator_type
)
)
elif len(evaluator_list) == 1:
return evaluator_list[0]
return DatasetEvaluators(evaluator_list)
@classmethod
def build_train_loader(cls, cfg):
# resue maskformer dataset mapper
if cfg.INPUT.DATASET_MAPPER_NAME == "mask_former_semantic":
mapper = MaskFormerSemanticDatasetMapper(cfg, True)
else:
mapper = None
return build_detection_train_loader(cfg, mapper=mapper)
@classmethod
def build_test_loader(cls, cfg, dataset_name):
# Add dataset meta info.
return build_detection_test_loader(cfg, dataset_name)
@classmethod
def build_lr_scheduler(cls, cfg, optimizer):
# use poly scheduler
return build_lr_scheduler(cfg, optimizer)
@classmethod
def build_optimizer(cls, cfg, model):
weight_decay_norm = cfg.SOLVER.WEIGHT_DECAY_NORM
weight_decay_embed_group = cfg.SOLVER.WEIGHT_DECAY_EMBED_GROUP
weight_decay_embed = cfg.SOLVER.WEIGHT_DECAY_EMBED
defaults = {}
defaults["lr"] = cfg.SOLVER.BASE_LR
defaults["weight_decay"] = cfg.SOLVER.WEIGHT_DECAY
norm_module_types = (
torch.nn.BatchNorm1d,
torch.nn.BatchNorm2d,
torch.nn.BatchNorm3d,
torch.nn.SyncBatchNorm,
# NaiveSyncBatchNorm inherits from BatchNorm2d
torch.nn.GroupNorm,
torch.nn.InstanceNorm1d,
torch.nn.InstanceNorm2d,
torch.nn.InstanceNorm3d,
torch.nn.LayerNorm,
torch.nn.LocalResponseNorm,
)
params: List[Dict[str, Any]] = []
memo: Set[torch.nn.parameter.Parameter] = set()
for module_name, module in model.named_modules():
for module_param_name, value in module.named_parameters(recurse=False):
if not value.requires_grad:
continue
# Avoid duplicating parameters
if value in memo:
continue
memo.add(value)
hyperparams = copy.copy(defaults)
hyperparams["param_name"] = ".".join([module_name, module_param_name])
if "side_adapter_network" or "backbone" in module_name:
hyperparams["lr"] = (
hyperparams["lr"] * cfg.SOLVER.BACKBONE_MULTIPLIER
)
# scale clip lr
if "clip" in module_name:
hyperparams["lr"] = hyperparams["lr"] * cfg.SOLVER.CLIP_MULTIPLIER
if any([x in module_param_name for x in weight_decay_embed_group]):
hyperparams["weight_decay"] = weight_decay_embed
if isinstance(module, norm_module_types):
hyperparams["weight_decay"] = weight_decay_norm
if isinstance(module, torch.nn.Embedding):
hyperparams["weight_decay"] = weight_decay_embed
params.append({"params": [value], **hyperparams})
def maybe_add_full_model_gradient_clipping(optim):
# detectron2 doesn't have full model gradient clipping now
clip_norm_val = cfg.SOLVER.CLIP_GRADIENTS.CLIP_VALUE
enable = (
cfg.SOLVER.CLIP_GRADIENTS.ENABLED
and cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model"
and clip_norm_val > 0.0
)
class FullModelGradientClippingOptimizer(optim):
def step(self, closure=None):
all_params = itertools.chain(
*[x["params"] for x in self.param_groups]
)
torch.nn.utils.clip_grad_norm_(all_params, clip_norm_val)
super().step(closure=closure)
return FullModelGradientClippingOptimizer if enable else optim
optimizer_type = cfg.SOLVER.OPTIMIZER
if optimizer_type == "SGD":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.SGD)(
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM
)
elif optimizer_type == "ADAMW":
optimizer = maybe_add_full_model_gradient_clipping(torch.optim.AdamW)(
params, cfg.SOLVER.BASE_LR
)
else:
raise NotImplementedError(f"no optimizer type {optimizer_type}")
if not cfg.SOLVER.CLIP_GRADIENTS.CLIP_TYPE == "full_model":
optimizer = maybe_add_gradient_clipping(cfg, optimizer)
# display the lr and wd of each param group in a table
optim_info = defaultdict(list)
total_params_size = 0
for group in optimizer.param_groups:
optim_info["Param Name"].append(group["param_name"])
optim_info["Param Shape"].append(
"X".join([str(x) for x in list(group["params"][0].shape)])
)
total_params_size += group["params"][0].numel()
optim_info["Lr"].append(group["lr"])
optim_info["Wd"].append(group["weight_decay"])
# Counting the number of parameters
optim_info["Param Name"].append("Total")
optim_info["Param Shape"].append("{:.2f}M".format(total_params_size / 1e6))
optim_info["Lr"].append("-")
optim_info["Wd"].append("-")
table = tabulate(
list(zip(*optim_info.values())),
headers=optim_info.keys(),
tablefmt="grid",
floatfmt=".2e",
stralign="center",
numalign="center",
)
logger = logging.getLogger("san")
logger.info("Optimizer Info:\n{}\n".format(table))
return optimizer
@classmethod
def test_with_TTA(cls, cfg, model):
logger = logging.getLogger("detectron2.trainer")
# In the end of training, run an evaluation with TTA.
logger.info("Running inference with test-time augmentation ...")
model = SemanticSegmentorWithTTA(cfg, model)
evaluators = [
cls.build_evaluator(
cfg, name, output_folder=os.path.join(cfg.OUTPUT_DIR, "inference_TTA")
)
for name in cfg.DATASETS.TEST
]
res = cls.test(cfg, model, evaluators)
res = OrderedDict({k + "_TTA": v for k, v in res.items()})
return res
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
add_deeplab_config(cfg)
add_ebseg_config(cfg)
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
default_setup(cfg, args)
if not args.eval_only:
setup_wandb(cfg, args)
setup_logger(output=cfg.OUTPUT_DIR, distributed_rank=comm.get_rank(), name="ebseg")
return cfg
def main(args):
cfg = setup(args)
if args.eval_only:
model = Trainer.build_model(cfg)
DetectionCheckpointer(model, save_dir=cfg.OUTPUT_DIR).resume_or_load(cfg.MODEL.WEIGHTS)
print(f'aplha={model.inference_alpha}, beta={model.inference_beta}, gamma={model.inference_gamma}')
res = Trainer.test(cfg, model)
if cfg.TEST.AUG.ENABLED:
res.update(Trainer.test_with_TTA(cfg, model))
if comm.is_main_process():
verify_results(cfg, res)
return res
trainer = Trainer(cfg)
trainer.resume_or_load(resume=args.resume)
trainer.scheduler.max_iters = cfg.SOLVER.MAX_ITER
return trainer.train()
if __name__ == "__main__":
args = default_argument_parser().parse_args()
print("Command Line Args:", args)
launch(
main,
args.num_gpus,
num_machines=args.num_machines,
machine_rank=args.machine_rank,
dist_url=args.dist_url,
args=(args,),
)