-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathLICENSE
119 lines (71 loc) · 8.07 KB
/
LICENSE
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
Copyright (c) 2024 Snap Inc. All rights reserved.
This sample code is made available by Snap Inc. for non-commercial, academic purposes only.
Non-commercial means not primarily intended for or directed towards commercial advantage or monetary compensation. Academic purposes mean solely for study, instruction, or non-commercial research, testing, or validation.
No commercial license, whether implied or otherwise, is granted in or to this code, unless you have entered into a separate agreement with Snap Inc. for such rights.
This sample code is provided as-is, without warranty of any kind, express or implied, including any warranties of merchantability, title, fitness for a particular purpose, non-infringement, or that the code is free of defects, errors or viruses. In no event will Snap Inc. be liable for any damages or losses of any kind arising from this sample code or your use thereof.
Any redistribution of this sample code, including in binary form, must retain or reproduce the above copyright notice, conditions, and disclaimer.
The following sets forth attribution notices for third-party software that may be included in portions of this sample code:
--------------------------- License for diffusers --------------------------------
Copyright © 2024 diffusers contributors (see credits below)
https://github.com/huggingface/diffusers
Apache 2.0 License
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
Credits:
This library concretizes previous work by many different authors and would not have been possible without their great research and implementations. We'd like to thank, in particular, the following implementations which have helped us in our development and without which the API could not have been as polished today:
@CompVis' latent diffusion models library, available here
@hojonathanho original DDPM implementation, available here as well as the extremely useful translation into PyTorch by @pesser, available here
@ermongroup's DDIM implementation, available here
@yang-song's Score-VE and Score-VP implementations, available here
We also want to thank @heejkoo for the very helpful overview of papers, code and resources on diffusion models, available here as well as @crowsonkb and @rromb for useful discussions and insights.
BibTeX Citation:
@misc{von-platen-etal-2022-diffusers,
author = {Patrick von Platen and Suraj Patil and Anton Lozhkov and Pedro Cuenca and Nathan Lambert and Kashif Rasul and Mishig Davaadorj and Dhruv Nair and Sayak Paul and William Berman and Yiyi Xu and Steven Liu and Thomas Wolf},
title = {Diffusers: State-of-the-art diffusion models},
year = {2022},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/huggingface/diffusers}}
}
--------------------------- License for Human Preference Score v2 --------------------------------
Copyright © 2024 Human Preference Score v2 contributors (see credits below)
https://github.com/tgxs002/HPSv2
Apache 2.0 License
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
BibTeX Citation:
@article{wu2023human,
title={Human Preference Score v2: A Solid Benchmark for Evaluating Human Preferences of Text-to-Image Synthesis},
author={Wu, Xiaoshi and Hao, Yiming and Sun, Keqiang and Chen, Yixiong and Zhu, Feng and Zhao, Rui and Li, Hongsheng},
journal={arXiv preprint arXiv:2306.09341},
year={2023}
}
--------------------------- License for CLIP --------------------------------
Copyright © 2024 OpenAI
https://github.com/openai/CLIP
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------- License for aesthetic predictor --------------------------------
Copyright © 2024 Romain Beaumont and Christoph Schuhmann
https://github.com/LAION-AI/aesthetic-predictor
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
--------------------------- License for PickScore --------------------------------
Copyright © 2024 Yuval Kirstain and other contributors (see citation below)
https://github.com/yuvalkirstain/PickScore
MIT License
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
BibTeX Citation:
@inproceedings{Kirstain2023PickaPicAO,
title={Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Generation},
author={Yuval Kirstain and Adam Polyak and Uriel Singer and Shahbuland Matiana and Joe Penna and Omer Levy},
year={2023}
}