forked from jonathan-taylor/selective-inference
-
Notifications
You must be signed in to change notification settings - Fork 8
/
core.py
345 lines (248 loc) · 10.9 KB
/
core.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
from copy import copy
import functools
import numpy as np
from scipy.stats import norm as ndist
from scipy.stats import binom
from selection.distributions.discrete_family import discrete_family
# local imports
from fitters import (logit_fit,
probit_fit)
from samplers import (normal_sampler,
split_sampler)
from learners import mixture_learner
def infer_general_target(algorithm,
observed_outcome,
observed_sampler,
observed_target,
cross_cov,
target_cov,
fit_probability=probit_fit,
fit_args={},
hypothesis=0,
alpha=0.1,
success_params=(1, 1),
B=500,
learner_klass=mixture_learner):
'''
Compute a p-value (or pivot) for a target having observed `outcome` of `algorithm(observed_sampler)`.
Parameters
----------
algorithm : callable
Selection algorithm that takes a noise source as its only argument.
observed_outcome : object
The purported value `algorithm(observed_sampler)`, i.e. run with the original seed.
observed_sampler : `normal_source`
Representation of the data used in the selection procedure.
cross_cov : np.float((*,1)) # 1 for 1-dimensional targets for now
Covariance between `observed_sampler.center` and target estimator.
target_cov : np.float((1, 1)) # 1 for 1-dimensional targets for now
Covariance of target estimator
observed_target : np.float # 1-dimensional targets for now
Observed value of target estimator.
fit_probability : callable
Function to learn a probability model P(Y=1|T) based on [T, Y].
hypothesis : np.float # 1-dimensional targets for now
Hypothesized value of target.
alpha : np.float
Level for 1 - confidence.
B : int
How many queries?
'''
learner = learner_klass(algorithm,
observed_set,
observed_sampler,
observed_target,
target_cov,
cross_cov)
weight_fn = learner.learn(fit_probability,
fit_args=fit_args,
check_selection=None,
B=B)
return _inference(observed_target,
target_cov,
weight_fn,
hypothesis=hypothesis,
alpha=alpha,
success_params=success_params)
def infer_full_target(algorithm,
observed_set,
feature,
observed_sampler,
dispersion, # sigma^2
fit_probability=probit_fit,
fit_args={},
hypothesis=0,
alpha=0.1,
success_params=(1, 1),
B=500,
learner_klass=mixture_learner):
'''
Compute a p-value (or pivot) for a target having observed `outcome` of `algorithm(observed_sampler)`.
Parameters
----------
algorithm : callable
Selection algorithm that takes a noise source as its only argument.
observed_set : set(int)
The purported value `algorithm(observed_sampler)`, i.e. run with the original seed.
feature : int
One of the elements of observed_set.
observed_sampler : `normal_source`
Representation of the data used in the selection procedure.
fit_probability : callable
Function to learn a probability model P(Y=1|T) based on [T, Y].
hypothesis : np.float # 1-dimensional targets for now
Hypothesized value of target.
alpha : np.float
Level for 1 - confidence.
B : int
How many queries?
Notes
-----
This function makes the assumption that covariance in observed sampler is the
true covariance of S and we are looking for inference about coordinates of the mean of
np.linalg.inv(covariance).dot(S)
this allows us to compute the required observed_target, cross_cov and target_cov.
'''
info_inv = np.linalg.inv(observed_sampler.covariance / dispersion) # scale free, i.e. X.T.dot(X) without sigma^2
target_cov = (info_inv[feature, feature] * dispersion).reshape((1, 1))
observed_target = np.squeeze(info_inv[feature].dot(observed_sampler.center))
cross_cov = observed_sampler.covariance.dot(info_inv[feature]).reshape((-1,1))
observed_set = set(observed_set)
if feature not in observed_set:
raise ValueError('for full target, we can only do inference for features observed in the outcome')
learner = learner_klass(algorithm,
observed_set,
observed_sampler,
observed_target,
target_cov,
cross_cov)
weight_fn = learner.learn(fit_probability,
fit_args=fit_args,
check_selection=lambda result: feature in set(result),
B=B)
return _inference(observed_target,
target_cov,
weight_fn,
hypothesis=hypothesis,
alpha=alpha,
success_params=success_params)
def learn_weights(algorithm,
observed_outcome,
observed_sampler,
observed_target,
target_cov,
cross_cov,
learning_proposal,
fit_probability,
fit_args={},
B=500,
check_selection=None):
"""
Learn a function
P(Y=1|T, N=S-c*T)
where N is the sufficient statistic corresponding to nuisance parameters and T is our target.
The random variable Y is
Y = check_selection(algorithm(new_sampler))
That is, we perturb the center of observed_sampler along a ray (or higher-dimensional affine
subspace) and rerun the algorithm, checking to see if the test `check_selection` passes.
For full model inference, `check_selection` will typically check to see if a given feature
is still in the selected set. For general targets, we will typically condition on the exact observed value
of `algorithm(observed_sampler)`.
Parameters
----------
algorithm : callable
Selection algorithm that takes a noise source as its only argument.
observed_set : set(int)
The purported value `algorithm(observed_sampler)`, i.e. run with the original seed.
feature : int
One of the elements of observed_set.
observed_sampler : `normal_source`
Representation of the data used in the selection procedure.
learning_proposal : callable
Proposed position of new T to add to evaluate algorithm at.
fit_probability : callable
Function to learn a probability model P(Y=1|T) based on [T, Y].
B : int
How many queries?
"""
S = selection_stat = observed_sampler.center
new_sampler = normal_sampler(observed_sampler.center.copy(),
observed_sampler.covariance.copy())
if check_selection is None:
check_selection = lambda result: result == observed_outcome
direction = cross_cov.dot(np.linalg.inv(target_cov).reshape((1,1))) # move along a ray through S with this direction
learning_Y, learning_T = [], []
def random_meta_algorithm(new_sampler, algorithm, check_selection, T):
new_sampler.center = S + direction.dot(T - observed_target)
new_result = algorithm(new_sampler)
return check_selection(new_result)
random_algorithm = functools.partial(random_meta_algorithm, new_sampler, algorithm, check_selection)
# this is the "active learning bit"
# START
for _ in range(B):
T = learning_proposal() # a guess at informative distribution for learning what we want
Y = random_algorithm(T)
learning_Y.append(Y)
learning_T.append(T)
learning_Y = np.array(learning_Y, np.float)
learning_T = np.squeeze(np.array(learning_T, np.float))
print('prob(select): ', np.mean(learning_Y))
conditional_law = fit_probability(learning_T, learning_Y, **fit_args)
return conditional_law
# Private functions
def _inference(observed_target,
target_cov,
weight_fn, # our fitted function
success_params=(1, 1),
hypothesis=0,
alpha=0.1):
'''
Produce p-values (or pivots) and confidence intervals having estimated a weighting function.
The basic object here is a 1-dimensional exponential family with reference density proportional
to
lambda t: scipy.stats.norm.pdf(t / np.sqrt(target_cov)) * weight_fn(t)
Parameters
----------
observed_target : float
target_cov : np.float((1, 1))
hypothesis : float
Hypothesised true mean of target.
alpha : np.float
Level for 1 - confidence.
Returns
-------
pivot : float
Probability integral transform of the observed_target at mean parameter "hypothesis"
confidence_interval : (float, float)
(1 - alpha) * 100% confidence interval.
'''
k, m = success_params # need at least k of m successes
target_sd = np.sqrt(target_cov[0, 0])
target_val = np.linspace(-20 * target_sd, 20 * target_sd, 5001) + observed_target
if (k, m) != (1, 1):
weight_val = np.array([binom(m, p).sf(k-1) for p in weight_fn(target_val)])
else:
weight_val = weight_fn(target_val)
weight_val *= ndist.pdf(target_val / target_sd)
exp_family = discrete_family(target_val, weight_val)
pivot = exp_family.cdf(hypothesis / target_cov[0, 0], x=observed_target)
pivot = 2 * min(pivot, 1-pivot)
interval = exp_family.equal_tailed_interval(observed_target, alpha=alpha)
rescaled_interval = (interval[0] * target_cov[0, 0], interval[1] * target_cov[0, 0])
return pivot, rescaled_interval # TODO: should do MLE as well does discrete_family do this?
def repeat_selection(base_algorithm, sampler, min_success, num_tries):
"""
Repeat a set-returning selection algorithm `num_tries` times,
returning all elements that appear at least `min_success` times.
"""
results = {}
for _ in range(num_tries):
current = base_algorithm(sampler)
for item in current:
results.setdefault(item, 0)
results[item] += 1
final_value = []
for key in results:
if results[key] >= min_success:
final_value.append(key)
return set(final_value)