forked from alaflaquiere/learn-masked-body-image
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtools.py
176 lines (139 loc) · 5.99 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python
# coding: utf-8
import numpy as np
import os
import glob
import json
import matplotlib.pyplot as plt
import tensorflow as tf
class Normalizer:
def __init__(self, low=0, high=1, min_data=None, max_data=None):
if low < high:
self.low, self.high = low, high
elif high < low:
print("Warning: lower limit greater than higher limit - inverting the two")
self.low, self.high = high, low
else:
print("Error: lower limit equal to higher limit")
self.low, self.high = low, high
self.min_data = min_data
self.max_data = max_data
def fit(self, x):
if (self.min_data is not None) or (self.max_data is not None):
print("Error: trying to overwrite the class attributes - forbidden operation")
return None
self.min_data = np.min(x, axis=0)
self.max_data = np.max(x, axis=0)
return self.min_data, self.max_data
def transform(self, x):
if (self.min_data is None) or (self.max_data is None):
print("Error: fit to data before using transform")
return None
x_n = (x - self.min_data).astype(np.float)
x_n = np.divide(x_n, self.max_data - self.min_data, out=np.zeros_like(x_n), where=self.max_data - self.min_data != 0)
x_n = x_n * (self.high - self.low) + self.low
return x_n
def fit_transform(self, x):
self.fit(x)
x_n = self.transform(x)
return x_n
def reconstruct(self, y):
if (self.min_data is None) or (self.max_data is None):
print("Error: fit to data before using reconstruct")
return None
x = (y - self.low) / (self.high - self.low)
x = x * (self.max_data - self.min_data)
x = x + self.min_data
return x
def create_checkerboard(height, width):
square_light_gray = np.full((5, 5, 3), 250)
square_dark_gray = np.full((5, 5, 3), 200)
checker_square = np.vstack((np.hstack((square_dark_gray, square_light_gray)), np.hstack((square_light_gray, square_dark_gray))))
checkerboard = np.tile(checker_square, (int(np.ceil(height / checker_square.shape[0])), int(np.ceil(width / checker_square.shape[1])), 1))
return checkerboard[:height, :width, :]
def load_data(dir_dataset):
"""
Load sensorimotor data.
Parameters:
dir_dataset - dataset directory
"""
# check directories
if not os.path.exists(dir_dataset):
print("Error: the dataset directory {} doesn't exist.".format(dir_dataset))
return
# check the content of the directory
images_list = sorted(glob.glob(dir_dataset + "/*.png"))
if len(images_list) == 0:
print("Error: the directory {} doesn't contain any png image.".format(dir_dataset))
return
if not os.path.exists(dir_dataset + "/positions.txt"):
print("Error: the directory {} doesn't contain a positions.txt file.".format(dir_dataset))
return
# load the motor data
with open(dir_dataset + "/positions.txt", "r") as file:
m = np.array(json.load(file))
# load the sensory data
for i, file in enumerate(images_list):
img = plt.imread(file)
if i == 0:
s = np.full((len(images_list), img.shape[0], img.shape[1], 3), np.nan)
s[i, :, :, :] = img
# get dataset parameters
number_samples, height, width, number_channels = s.shape
number_joints = m.shape[1]
# check the data compatibility
temp = m.shape[0]
if not number_samples == temp:
print("Error: incompatible number of motor_input configurations and images ({} != {})".format(temp, number_samples))
return
print("loaded data: {} samples, {} joints, {}x{}x{} images".format(number_samples, number_joints, height, width, number_channels))
return m, s, number_samples, height, width, number_channels, number_joints
def load_network(dir_model):
"""
Load a network and return useful placeholders data.
Parameters:
dir_dataset - dataset directory
"""
# check model directory
if not os.path.exists(dir_model) or not os.path.exists(dir_model + "/network.ckpt.meta"):
print("Error: the directory {} doesn't exist or doesn't contain a network.ckpt.meta file.".format(dir_model))
return
# reload the graph
tf.reset_default_graph()
saver = tf.train.import_meta_graph(dir_model + "/network.ckpt.meta")
graph = tf.get_default_graph()
# recover the input and outputs
motor_input = graph.get_tensor_by_name("motor_input:0")
predicted_image = graph.get_tensor_by_name("image_branch/predicted_image/Relu:0")
predicted_error = graph.get_tensor_by_name("error_branch/predicted_error/Relu:0")
return saver, motor_input, predicted_image, predicted_error
def _load_data(dir_dataset):
# DEPRECATED
print("loading the data...")
if os.path.exists(dir_dataset + "/positions.txt") and not glob.glob(dir_dataset + "/*.png") == []:
print("new data format")
data_format = "new"
elif os.path.exists(dir_dataset + "/positions.json") and os.path.exists(dir_dataset + "/images.json"):
print("old data format")
data_format = "old"
else:
print("Error: incorrect path to dataset")
if data_format is "new":
# load the motor data
with open(dir_dataset + "/positions.txt", "r") as file:
m = np.array(json.load(file))
# load the sensory data
files_list = sorted(glob.glob(dir_dataset + "/*.png"))
for i, file in enumerate(files_list):
img = plt.imread(file)
if i == 0:
s = np.full((len(files_list), img.shape[0], img.shape[1], 3), np.nan)
s[i, :, :, :] = img
elif data_format is "old":
# load the motor data
with open(dir_dataset + "/positions.json", "r") as file:
m = np.array(json.load(file))
# load the sensory data
with open(dir_dataset + "/images.json", "r") as file:
s = np.array(json.load(file))
return m, s