Here we're defining and training a convolutional neural network to perform facial keypoint detection, and using computer vision techniques to transform images of faces. The first step in any challenge like this will be to load and visualize the data you'll be working with.
Let's take a look at some examples of images and corresponding facial keypoints.
Facial keypoints (also called facial landmarks) are the small magenta dots shown on each of the faces in the image above. In each training and test image, there is a single face and 68 keypoints, with coordinates (x, y), for that face. These keypoints mark important areas of the face: the eyes, corners of the mouth, the nose, etc. These keypoints are relevant for a variety of tasks, such as face filters, emotion recognition, pose recognition, and so on. Here they are, numbered, and you can see that specific ranges of points match different portions of the face.
- Clone the repository, and navigate to the downloaded folder. This may take a minute or two to clone due to the included image data.
git clone https://github.com/soheillll/Facial-Keypoint-Detection
cd P1_Facial_Keypoints
-
Create (and activate) a new environment, named
cv-nd
with Python 3.6. If prompted to proceed with the install(Proceed [y]/n)
type y.- Linux or Mac:
conda create -n cv-nd python=3.6 source activate cv-nd
- Windows:
conda create --name cv-nd python=3.6 activate cv-nd
At this point your command line should look something like:
(cv-nd) <User>:P1_Facial_Keypoints <user>$
. The(cv-nd)
indicates that your environment has been activated, and you can proceed with further package installations. -
Install PyTorch and torchvision; this should install the latest version of PyTorch.
- Linux or Mac:
conda install pytorch torchvision -c pytorch
- Windows:
conda install pytorch-cpu -c pytorch pip install torchvision
-
Install a few required pip packages, which are specified in the requirements text file (including OpenCV).
pip install -r requirements.txt
All of the data you'll need to train a neural network is in the Facial-Keypoint-Detection repo, in the subdirectory data
. In this folder are training and tests set of image/keypoint data, and their respective csv files. This will be further explored in Notebook 1: Loading and Visualizing Data, and you're encouraged to look trough these folders on your own, too.
- Navigate back to the repo. (Also, your source environment should still be activated at this point.)
cd
cd Facial-Keypoint-Detection
- Open the directory of notebooks, using the below command. You'll see all of the project files appear in your local environment; open the first notebook and follow the instructions.
jupyter notebook
- Once you open any of the project notebooks, make sure you are in the correct
cv-nd
environment by clickingKernel > Change Kernel > cv-nd
.