-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathreal_time_object_detection.py
160 lines (134 loc) · 5.65 KB
/
real_time_object_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# USAGE
# python3.7 real_time_object_detection.py --prototxt MobileNetSSD_deploy.prototxt.txt --model MobileNetSSD_deploy.caffemodel
# import the necessary packages
import cv2
import imutils
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import time
import os
# importing supporting files
from Ultrasonics import ultrasonic
from Suggestion import suggestions
import speech
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-p", "--prototxt", required=True,
help="path to Caffe 'deploy' prototxt file")
ap.add_argument("-m", "--model", required=True,
help="path to Caffe pre-trained model")
ap.add_argument("-c", "--confidence", type=float, default=0.2,
help="minimum probability to filter weak detections")
args = vars(ap.parse_args())
# initialize the list of class labels MobileNet SSD was trained to
# detect, then generate a set of bounding box colors for each class
CLASSES = ["background", "aeroplane", "bicycle", "bird", "boat",
"bottle", "bus", "car", "cat", "chair", "cow", "diningtable",
"dog", "horse", "motorbike", "person", "pottedplant", "sheep",
"sofa", "train", "tvmonitor"]
COLORS = np.random.uniform(0, 255, size=(len(CLASSES), 3))
# load our serialized model from disk
print("[INFO] loading model...")
net = cv2.dnn.readNetFromCaffe(args["prototxt"], args["model"])
# initialize the video stream, allow the cammera sensor to warmup,
# and initialize the FPS counter
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)
fps = FPS().start()
# loop over the frames from the video stream
while True:
# grab the frame from the threaded video stream and resize it
# to have a maximum width of 400 pixels
frame = vs.read()
frame = imutils.resize(frame, width=400)
# grab the frame dimensions and convert it to a blob
(h, w) = frame.shape[:2]
blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)),
0.007843, (300, 300), 127.5)
# pass the blob through the network and obtain the detections and
# predictions
net.setInput(blob)
detections = net.forward()
# loop over the detections
for i in np.arange(0, detections.shape[2]):
# extract the confidence (i.e., probability) associated with
# the prediction
confidence = detections[0, 0, i, 2]
# filter out weak detections by ensuring the `confidence` is
# greater than the minimum confidence
if confidence > args["confidence"]:
# extract the index of the class label from the
# `detections`, then compute the (x, y)-coordinates of
# the bounding box for the object
idx = int(detections[0, 0, i, 1])
box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
(startX, startY, endX, endY) = box.astype("int")
# draw the prediction on the frame
label = "{}: {:.2f}%".format(CLASSES[idx],
confidence * 100)
cv2.rectangle(frame, (startX, startY), (endX, endY),
COLORS[idx], 2)
y = startY - 15 if startY - 15 > 15 else startY + 15
cv2.putText(frame, label, (startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, COLORS[idx], 2)
#To espeak remove multiline comment from beow lines.
#print label
print(CLASSES[idx])
# print(suggestions.suggest(CLASSES[idx]) )
# Speak the object name and suggest an action to him/her.
text = CLASSES[idx] + " is in front of you."
print(text)
os.system('espeak "{}" --stdout | aplay'.format(text))
if(suggestions.suggest(CLASSES[idx])!= ""):
s = suggestions.suggest(CLASSES[idx])
print("Suggetion: ", s)
os.system('espeak "{}" --stdout | aplay'.format(s))
# speech.speak(s)
# calculating front distance
dist = ultrasonic.distance(2, 3) # GPIO pin2 - trig, pin3 - echo
print ("Measured Distance from front = %.1f cm" % dist)
time.sleep(1)
'''
if(dist<40):
glowLed(16) # GPIO pin
'''
# calculating left distance
dist_left = ultrasonic.distance(17, 18) # GPIO pin - trig, pin - echo
print("Measured Distance from left = %.1f cm" % dist_left)
time.sleep(1)
'''
if(dist_left<40):
glowLed(20) # GPIO pin
'''
# calculating right distance
dist_right = ultrasonic.distance(26, 19) # GPIO pin2 - trig, pin3 - echo
print("Measured Distance from right = %.1f cm" % dist_right)
time.sleep(1)
'''
if(dist_right<40):
glowLed(21) # GPIO pin
'''
# Notifying blind person about the availablity of space.
d1 = "Distance available at front to you is " + str(dist)
d2 = "Distance to your right and left is " + str(dist_right) + str(dist_left) + "respectively"
text1 = d1 + d2
print(text1)
# speech.speak(text1)
# show the output frame
# cv2.imshow("Frame", frame)
key = cv2.waitKey(1) & 0xFF
# if the `q` key was pressed, break from the loop
if key == ord("q"):
break
# update the FPS counter
fps.update()
# stop the timer and display FPS information
fps.stop()
print("[INFO] elapsed time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))
# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()