-
Notifications
You must be signed in to change notification settings - Fork 0
Code for paper: P.J. Bentley, S.L. Lim, A. Gaier and L. Tran. (2022). COIL: Constrained Optimization in Learned Latent Space. Learning Representations for Valid Solutions. ACM Genetic and Evolutionary Computation Conference (GECCO'22) Companion, ACM, pp. 1870–1877.
soolinglim/coil
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
README ------ Code for the paper entitled "COIL: Constrained Optimization in Learned Latent Space. Learning Representations for Valid Solutions." Please cite: Peter J Bentley, Soo Ling Lim, Adam Gaier and Linh Tran. 2022. COIL: Constrained Optimization in Workshop on Learned Latent Space: Learning Representations for Valid Solutions. In Genetic and Evolutionary Computation Conference Companion (GECCO ’22 Companion). ACM, Boston, USA. Top-level directory . ├── COIL # COIL code (C1 and C2) └── README.txt # README file Required packages: deap==1.3.1 pytorch==1.9.0 numpy==1.18.5 matplotlib==3.4.3 ---- Directory: COIL ---- . ├── ... ├── COIL # COIL code (C1 and C2) │ ├── c1.py # Specifies objective, constraint and settings for C1 │ ├── c2.py # Specifies objective, constraint and settings for C2 │ ├── generate_data.py # COIL Step 1 for C1: generates data for C1 │ ├── generate_data_c2.py # COIL Step 1 for C2: generates data specifically for C2 │ ├── learn_representation.py# COIL Step 2: learns representation │ ├── optimise.py # COIL Step 3: optimise │ ├── ga.py # Standard GA │ ├── analyse.py # Compares results from GA and COIL and produces charts │ ├── data # Folder containing data generated by generate_data.py │ ├── vae # Folder containing VAEs generated by learn_representation.py │ ├── results # Folder containing results generated by optimse.py and ga.py │ └── image # Folder containing images generated by analyse.py └── ... * To run COIL for C1 with 3 variables: >> python generate_data.py -e c1 -v 3 >> python learn_representation.py -e c1 -v 3 >> python optimise.py -e c1 -v 3 -r 100 * To run COIL for C2 with 3 variables: >> python generate_data_c2.py -e c2 -v 3 >> python learn_representation.py -e c2 -v 3 >> python optimise.py -e c2 -v 3 -r 100
About
Code for paper: P.J. Bentley, S.L. Lim, A. Gaier and L. Tran. (2022). COIL: Constrained Optimization in Learned Latent Space. Learning Representations for Valid Solutions. ACM Genetic and Evolutionary Computation Conference (GECCO'22) Companion, ACM, pp. 1870–1877.
Topics
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published