-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_model.py
298 lines (240 loc) · 11 KB
/
train_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
import os
import tqdm
import shutil
from os.path import dirname
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.enabled = True
import torch
import numpy as np
import importlib
import argparse
from torch import nn
from torch.nn import DataParallel
from utils.misc import make_input, make_output, importNet
from utils.checkpoints import save_checkpoint, save, reload
import utils.losses as loss
from datetime import datetime
from pytz import timezone
from utils.model_summary import summary as get_summary
#from multiprocessing import set_start_method
#set_start_method('spawn')
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
#os.chdir('/home/suryam/adversarial-posenet/')
def parse_command_line():
parser = argparse.ArgumentParser()
parser.add_argument('-c', '--continue_exp', type=str, help='continue exp')
parser.add_argument('-e', '--exp', type=str, default='pose', help='experiments name')
parser.add_argument('-m', '--max_iters', type=int, default=200, help='max number of iterations (thousands)')
args = parser.parse_args()
return args
class Forward_Generator(nn.Module):
"""
The wrapper module that will behave differntly for training or testing
inference_keys specify the inputs for inference
"""
def __init__(self, gen_net, inference_keys, calc_gen_loss=None):
super(Forward_Generator, self).__init__()
self.generator = gen_net
self.keys = inference_keys
self.calc_gen_loss = calc_gen_loss
def forward(self, imgs, **inputs):
inps = {}
labels = {}
for i in inputs:
if i in self.keys:
inps[i] = inputs[i]
else:
labels[i] = inputs[i]
if not self.training:
combined_hm_preds, processed_img = self.generator(imgs, **inps)
combined_hm_preds = torch.stack(combined_hm_preds, 1)
if type(combined_hm_preds) != list and type(combined_hm_preds) != tuple:
combined_hm_preds = [combined_hm_preds]
return combined_hm_preds
else:
combined_hm_preds, processed_img = self.generator(imgs, **inps)
# generator output will be input for the two discriminators
discriminator_input = [processed_img] + combined_hm_preds
combined_hm_preds = torch.stack(combined_hm_preds, 1)
if type(combined_hm_preds) != list and type(combined_hm_preds) != tuple:
combined_hm_preds = [combined_hm_preds]
# calculates gen loss
gen_loss = self.calc_gen_loss(**labels, combined_hm_preds=combined_hm_preds)
return list([discriminator_input]) + list(combined_hm_preds) + list([gen_loss])
class Forward_PoseDiscriminator(nn.Module):
"""
The wrapper module that will behave differetly for training or testing
inference_keys specify the inputs for inference
"""
def __init__(self, pdisc_net, inference_keys, calc_pdisc_loss=None):
super(Forward_PoseDiscriminator, self).__init__()
self.pose_disc = pdisc_net
self.keys = inference_keys
self.calc_pdisc_loss = calc_pdisc_loss
def forward(self, tag, gen_out, dlta, **inputs):
inps = {}
labels = {}
for i in inputs:
if i in self.keys:
inps[i] = inputs[i]
else:
labels[i] = inputs[i]
if tag == 'real':
p_real = self.pose_disc(tag=tag, pp_img=gen_out[0], **labels)
p_disc_loss = self.calc_pdisc_loss(tag, p_real, dlta, **labels)
else:
p_fake = self.pose_disc(tag=tag, pp_img=gen_out[0], heatmaps=gen_out[1:])
p_disc_loss = self.calc_pdisc_loss(tag, p_fake, dlta, **labels)
return p_disc_loss
def make_network(configs):
train_config = configs['train']
config = configs['inference']
def calc_gen_loss(*args, **kwargs):
return multitaskGen.calc_loss(*args, **kwargs)
def calc_pdisc_loss(*args, **kwargs):
return pose_discriminator.calc_loss(*args, **kwargs)
## creating adversarial posenet
# Multi Task Generator
multitaskGen = importNet(configs['gen_network'])(**config)
forward_genNet = DataParallel(multitaskGen).cuda()
# Pose Discriminator
pose_discriminator = importNet(configs['pose_disc_network'])(**config)
forward_pDisc = DataParallel(pose_discriminator).cuda()
config['gen_net'] = Forward_Generator(forward_genNet, configs['inference']['keys'], calc_gen_loss)
config['pdisc_net'] = Forward_PoseDiscriminator(forward_pDisc, configs['inference']['keys'], calc_pdisc_loss)
## optimizer, experiment setup
train_config['gen_optimizer'] = torch.optim.Adam(filter(lambda p: p.requires_grad, config['gen_net'].parameters()),
train_config['learning_rate'])
train_config['pdisc_optimizer'] = torch.optim.Adam(filter(lambda p: p.requires_grad, config['pdisc_net'].parameters()),
train_config['learning_rate'])
exp_path = os.path.join('exp', configs['opt'].exp)
if configs['opt'].exp == 'pose' and configs['opt'].continue_exp is not None:
exp_path = os.path.join('exp', configs['opt'].continue_exp)
if not os.path.exists(exp_path):
os.mkdir(exp_path)
logger = open(os.path.join(exp_path, 'log'), 'a+')
def make_train(batch_id, config, phase, **inputs):
for i in inputs:
try:
inputs[i] = make_input(inputs[i])
except:
pass # for last input, which is a string (id_)
gen_net = config['inference']['gen_net']
config['batch_id'] = batch_id
#print(gen_net)
gen_net = gen_net.train()
pose_disc = config['inference']['pdisc_net']
pose_disc = pose_disc.train()
if phase != 'inference':
## Forward Multi-task Generator
# generator output: list([discriminator_input]) + list(combined_hm_preds) + list([gen_loss])
gen_out = gen_net(inputs['imgs'], **{i: inputs[i] for i in inputs if i != 'imgs'})
# slicing gen_out
disc_ip = gen_out[0]
gen_losses = gen_out[1:]
num_loss = len(config['train']['loss']) # num_loss=1
## initializing losses
gen_loss = 0
pdisc_real_loss = 0
pdisc_fake_loss = 0
pdisc_loss = 0
if phase == 'train':
## Pose Discriminator
# '''pose discriminator output: list([p_real_loss/p_fake_loss])'''
## Train Pose Discriminator using fake and real heatmaps
pdisc_optimizer = train_config['pdisc_optimizer']
pdisc_optimizer.zero_grad()
for tag in ['fake', 'real']:
pdisc_losses = pose_disc(tag, disc_ip, config['train']['dlta'], **{i: inputs[i] for i in inputs if i != 'imgs'})
if tag == 'real':
# Phase 1
pdisc_real_loss = pdisc_real_loss + torch.mean(pdisc_losses)
# optimize P net by maximizing p_real_loss
pdisc_real_loss.backward(retain_graph=True)
else:
# Phase 2
pdisc_fake_loss = pdisc_fake_loss + torch.mean(pdisc_losses)
# optimize P net by maximizing p_fake_loss
pdisc_fake_loss.backward(retain_graph=True)
# update weights
pdisc_optimizer.step()
# evaluate gen loss
gen_loss = gen_loss + torch.mean(gen_losses[-1])
# update gen_loss
pdisc_loss = pdisc_real_loss.item() + pdisc_fake_loss.item()
gen_loss = gen_loss + config['train']['beta'] * (- pdisc_loss)
## Train Generator using the updated loss
gen_optimizer = train_config['gen_optimizer']
gen_optimizer.zero_grad()
# optimize generator by updated gen_loss
gen_loss.backward()
gen_optimizer.step()
# printing loss
toprint = '\n{}: '.format(batch_id)
genloss = make_output(gen_losses[-1])
genloss = genloss.mean()
if pdisc_loss !=0:
pdiscloss = pdisc_loss
combined_loss = genloss + config['train']['beta'] * (- pdiscloss)
toprint += 'gen_loss {} pdisc_loss {} combined_loss {}'.format(format(genloss.mean(), '.8f'), format(-pdiscloss, '.8f'), format(combined_loss.mean(), '.8f'))
logger.write(toprint)
logger.flush()
if batch_id == config['train']['decay_iters']:
## decrease the learning rate after decay # iterations
for param_group in gen_optimizer.param_groups:
param_group['lr'] = config['train']['decay_lr']
return None
else:
out = {}
gen_net = gen_net.eval()
gen_out = gen_net(**inputs)
gen_out = gen_out[0]
if type(gen_out) != list and type(gen_out) != tuple:
gen_out = [gen_out]
out['preds'] = [make_output(i) for i in gen_out]
return out
return make_train
def train(data_loader, train_func, config):
while True:
for phase in ['train', 'valid']:
num_step = config['train']['{}_iters'.format(phase)]
data_gen = data_loader(phase)
print('start', phase, config['opt'].exp)
show_range = range(num_step)
show_range = tqdm.tqdm(show_range, total=num_step, ascii=True)
batch_id = num_step * config['train']['epoch']
if batch_id > config['opt'].max_iters * 1000:
return
for i in show_range:
data = next(data_gen)
outs = train_func(batch_id+i, config, phase, **data)
config['train']['epoch'] += 1
save(config)
def init():
"""
utils.__config__ contains the variables and hyperparameters that control the training and testing.
"""
## setting hyper parameters
opt = parse_command_line() # limited control through command line
task = importlib.import_module('utils.config')
exp_path = os.path.join('exp', opt.exp)
current_time = datetime.now().strftime('%b%d_%H-%M-%S')
config = task.__config__
try: os.makedirs(exp_path)
except FileExistsError: pass
config['opt'] = opt # adding parsed commands to the configuration dict
config['data_provider'] = importlib.import_module(config['data_provider'])
## train model
train_func = make_network(config)
# save and reload model
reload(config)
return train_func, config
if __name__ == '__main__':
## get training function and config
train_func, config = init()
## creating data_loader(), object to load data
data_loader = config['data_provider'].init(config)
train(data_loader, train_func, config)
print(datetime.now(timezone('EST')))