forked from ai2es/ptype-physical
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
111 lines (86 loc) · 3.59 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import yaml, glob
import pandas as pd
import tqdm
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
from tensorflow.python.keras import backend as K
from tensorflow.python.keras.callbacks import Callback, ModelCheckpoint, CSVLogger, EarlyStopping
from tensorflow.python.keras.callbacks import ReduceLROnPlateau, LearningRateScheduler
from typing import List, Dict
import logging
def plot_confusion_matrix(y_true, y_pred, classes,
normalize=False,
title=None,
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if not title:
if normalize:
title = 'Normalized confusion matrix'
else:
title = 'Confusion matrix, without normalization'
# Compute confusion matrix
cm = confusion_matrix(y_true, y_pred)
# Only use the labels that appear in the data
# classes = classes[unique_labels(y_true, y_pred)]
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
fig, ax = plt.subplots()
im = ax.imshow(cm, interpolation='nearest', cmap=cmap)
ax.figure.colorbar(im, ax=ax)
# We want to show all ticks...
ax.set(xticks=np.arange(cm.shape[1]),
yticks=np.arange(cm.shape[0]),
# ... and label them with the respective list entries
xticklabels=classes, yticklabels=classes,
title=title,
ylabel='True label',
xlabel='Predicted label')
# Rotate the tick labels and set their alignment.
plt.setp(ax.get_xticklabels(), rotation=45, ha="right",
rotation_mode="anchor")
# Loop over data dimensions and create text annotations.
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i in range(cm.shape[0]):
for j in range(cm.shape[1]):
ax.text(j, i, format(cm[i, j], fmt),
ha="center", va="center",
color="white" if cm[i, j] > thresh else "black")
fig.tight_layout()
# plt.xlim(-0.5, len(np.unique(y))-0.5)
# plt.ylim(len(np.unique(y))-0.5, -0.5)
return ax
logger = logging.getLogger(__name__)
class LearningRateTracker(Callback):
def on_epoch_end(self, epoch: int, logs: Dict[str, float] = {}) -> None:
logs = logs or {}
logs['lr'] = K.get_value(self.model.optimizer.lr)
def get_callbacks(config: Dict[str, str]) -> List[Callback]:
callbacks = []
if "callbacks" in config:
config = config["callbacks"]
else:
return []
if "ModelCheckpoint" in config:
callbacks.append(ModelCheckpoint(**config["ModelCheckpoint"]))
logger.info("... loaded Checkpointer")
if "EarlyStopping" in config:
callbacks.append(EarlyStopping(**config["EarlyStopping"]))
logger.info("... loaded EarlyStopping")
# LearningRateTracker(), ## ReduceLROnPlateau does this already, use when supplying custom LR annealer
if "ReduceLROnPlateau" in config:
callbacks.append(ReduceLROnPlateau(**config["ReduceLROnPlateau"]))
logger.info("... loaded ReduceLROnPlateau")
if "CSVLogger" in config:
callbacks.append(CSVLogger(**config["CSVLogger"]))
logger.info("... loaded CSVLogger")
return callbacks