-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_nonbatched.py
48 lines (41 loc) · 2.08 KB
/
run_nonbatched.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch
import triton
import triton.language as tl
STATE_SIZE = 2048
SEQUENCE_LENGTH = 8192
N_HEADS = 1024
@triton.jit
def ssm_kernel_perhead(u_ptr, a_ptr, b_ptr, c_ptr, output_ptr, U_LENGTH: tl.constexpr, N: tl.constexpr, N_HEADS: tl.constexpr):
i = tl.program_id(axis=0)
outputs = tl.zeros((U_LENGTH,), dtype=tl.float32)
X = tl.zeros((N,), dtype=tl.float32)
A = tl.load(a_ptr + i * N + tl.arange(0, N))
B = tl.load(b_ptr + i * N + tl.arange(0, N))
C = tl.load(c_ptr + i * N + tl.arange(0, N))
u = tl.load(u_ptr + tl.arange(0, U_LENGTH))
for j in range(U_LENGTH):
u_t = tl.load(u_ptr + j)
X = X*A + B*u_t
value = tl.sum(X*C, axis=0)
tl.store(output_ptr + (i * U_LENGTH + j), value)
def triton_ssm(sequence, A_DIAG, B, C, N_HEADS, STATE_SIZE, SEQUENCE_LENGTH: int):
triton_outputs = torch.empty((N_HEADS, len(sequence)), device="cuda", dtype=sequence.dtype)
asm = ssm_kernel_perhead[(N_HEADS,)](sequence, A_DIAG, B, C, triton_outputs, len(sequence), STATE_SIZE, N_HEADS)
return triton_outputs, asm
state = torch.zeros((STATE_SIZE))
A = torch.eye(STATE_SIZE, dtype=torch.float32, device="cuda")[None, :, :].repeat(N_HEADS, 1, 1)
B = torch.ones((N_HEADS, STATE_SIZE, 1), dtype=torch.float32, device="cuda")
C = torch.ones((N_HEADS, 1, STATE_SIZE), dtype=torch.float32, device="cuda")
# A *= torch.ones(N_HEADS, STATE_SIZE, STATE_SIZE, device="cuda")
A_DIAG = torch.stack([torch.diagonal(A[i]) for i in range(len(A))])
outputs = torch.zeros((N_HEADS, SEQUENCE_LENGTH), dtype=torch.float32, device="cuda")
sequence = torch.ones(SEQUENCE_LENGTH, dtype=torch.float32, device="cuda")[:, None]
B_bf16 = B.to(dtype=torch.bfloat16)
C_bf16 = C.to(dtype=torch.bfloat16)
A_DIAG_bf16 = A_DIAG.to(dtype=torch.bfloat16)
sequence_bf16 = sequence.to(dtype=torch.bfloat16)
for i in range(8):
# triton_outputs, asm = triton_ssm(sequence_bf16, A_DIAG_bf16, B_bf16, C_bf16, N_HEADS, STATE_SIZE, SEQUENCE_LENGTH)
triton_outputs, asm = triton_ssm(sequence, A_DIAG, B, C, N_HEADS, STATE_SIZE, SEQUENCE_LENGTH)
print(triton_outputs.sum())
breakpoint()