-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathadvent2.rs
252 lines (206 loc) · 9.64 KB
/
advent2.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
mod chips;
use chips::is_zero::{IsZeroConfig, IsZeroChip};
use group::ff::PrimeField;
use halo2_proofs::{
circuit::*,
plonk::*, poly::Rotation, pasta::Fp, dev::MockProver,
};
fn const_val<F: PrimeField>(value: u64) -> Expression<F> {
Expression::Constant(F::from(value))
}
#[derive(Debug, Clone)]
struct AdventConfig<F: PrimeField> {
pub advice: [Column<Advice>; 3],
pub selector: Selector,
pub instance: Column<Instance>,
pub is_zero_chips: [IsZeroConfig<F>; 2],
}
struct AdventChip<F: PrimeField, const N: usize> {
config: AdventConfig<F>
}
impl<F: PrimeField, const N: usize> AdventChip<F, N> {
fn construct(config: AdventConfig<F>) -> Self {
Self { config }
}
fn configure(meta: &mut ConstraintSystem<F>, advice: [Column<Advice>; 3], instance: Column<Instance>, constant: Column<Fixed>) -> AdventConfig<F> {
// We receive the advices as args so we can reuse them
let [col_x, col_y, col_accum] = advice;
// Selectors do get optimized by the backend, so no need to receive them as args
let selector: Selector = meta.selector();
// Enable equality so we can assign the last accum value to the public instance
meta.enable_equality(col_accum);
meta.enable_equality(instance);
// QUESTION: Can we drop this? We just want to set the first accum to zero
meta.enable_constant(constant);
// yWins <==> (y+2-x) * (y-1-x) == 0;
let y_wins = IsZeroChip::configure(
meta,
|meta| meta.query_selector(selector),
|meta| {
let x = meta.query_advice(col_x, Rotation::cur());
let y = meta.query_advice(col_y, Rotation::cur());
(y.clone() + const_val(2) - x.clone()) * (y - const_val(1) - x)
}
);
// isDraw <==> y-x == 0;
let is_draw = IsZeroChip::configure(
meta,
|meta| meta.query_selector(selector),
|meta| {
let x = meta.query_advice(col_x, Rotation::cur());
let y = meta.query_advice(col_y, Rotation::cur());
y - x
}
);
// Create a custom gate for each round
meta.create_gate("round", |meta| {
let s = meta.query_selector(selector);
let x = meta.query_advice(col_x, Rotation::cur());
let y = meta.query_advice(col_y, Rotation::cur());
let accum = meta.query_advice(col_accum, Rotation::cur());
// We store the output in the accum column in the next row
let out = meta.query_advice(col_accum, Rotation::next());
// Constraints for each round
// TODO: Review Rust borrowing rules to see if there's a way around cloning everything
vec![
// out = y_wins * 6 + is_draw * 3 + y + 1 + accum
s.clone() * (out - (y_wins.expr() * F::from(6) + is_draw.expr() * F::from(3) + y.clone() + const_val(1) + accum)),
// x in (0,1,2)
s.clone() * x.clone() * (x.clone() - const_val(1)) * (x.clone() - const_val(2)),
// y in (0,1,2)
s.clone() * y.clone() * (y.clone() - const_val(1)) * (y.clone() - const_val(2)),
]
});
AdventConfig { advice: [col_x, col_y, col_accum], selector, instance, is_zero_chips: [y_wins, is_draw] }
}
fn assign(&self, mut layouter: impl Layouter<F>, xs: [Value<F>; N], ys: [Value<F>; N]) -> Result<AssignedCell<F,F>, Error> {
// We assign the entire matrix in a single region so we can overlap round gadgets (see fibonacci/example2 in halo2-examples)
// Otherwise, we'd have to copy_advice from one to the other (as we did in fibo1)
layouter.assign_region(
|| "rps game",
|mut region| {
let [col_x, col_y, col_accum] = self.config.advice;
let [y_wins, is_draw] = &self.config.is_zero_chips;
let mut accum_value: Value<F> = Value::known(F::ZERO);
let mut out_cell = Err(Error::Synthesis);
// Assign one row per round
for row in 0..N {
let [x, y] = [xs[row], ys[row]];
// Enable the selector for the round gate
self.config.selector.enable(&mut region, row)?;
// QUESTION: Do we need to explicitly set this value to zero?
// This is requiring us to add a constant column to the chip config just with zeros
if row == 0 {
region.assign_advice_from_constant(
|| "zero",
col_accum,
0,
F::ZERO
)?;
}
// Set x and y advice columns to the input values
region.assign_advice(
|| format!("x[{}]", row),
col_x,
row,
|| x
)?;
region.assign_advice(
|| format!("y[{}]", row),
col_y,
row,
|| y
)?;
// Assign the is_zero chips to the same expressions defined in the gates
// yWins <==> (y+2-x) * (y-1-x) == 0;
let y_wins_chip = IsZeroChip::construct(y_wins.clone());
let y_wins_value = (y + Value::known(F::from(2)) - x) * (y - Value::known(F::ONE) - x);
let y_wins = y_wins_chip.assign(&mut region, row, y_wins_value)?;
// isDraw <==> y-x == 0;
let is_draw_chip = IsZeroChip::construct(is_draw.clone());
let is_draw_value = y - x;
let is_draw = is_draw_chip.assign(&mut region, row, is_draw_value)?;
// Calculate the score of this round
let round_score = y_wins.zip(is_draw).and_then(|(y_wins, is_draw)| {
let partial_score = if y_wins { 6 } else if is_draw { 3 } else { 0 };
Value::known(F::from(partial_score)) + y + Value::known(F::ONE)
});
// Assign the col_accum *in the next row* to the new score
accum_value = accum_value + round_score;
out_cell = region.assign_advice(
|| format!("out[{}]", row),
col_accum,
row + 1,
|| accum_value
);
};
// Return the last cell in col_accum
out_cell
})
}
pub fn expose_public(&self, mut layouter: impl Layouter<F>, cell: &AssignedCell<F,F>, round: usize) -> Result<(), Error> {
layouter.constrain_instance(cell.cell(), self.config.instance, round)
}
}
struct AdventCircuit<F: PrimeField, const N: usize> {
xs: [Value<F>; N],
ys: [Value<F>; N],
}
impl<F: PrimeField, const N: usize> Circuit<F> for AdventCircuit<F, N> {
type Config = AdventConfig<F>;
type FloorPlanner = SimpleFloorPlanner;
fn without_witnesses(&self) -> Self {
Self {
xs: [Value::unknown(); N],
ys: [Value::unknown(); N],
}
}
fn configure(meta: &mut ConstraintSystem<F>) -> Self::Config {
let col_x = meta.advice_column();
let col_y = meta.advice_column();
let col_accum = meta.advice_column();
let instance = meta.instance_column();
let constant = meta.fixed_column();
AdventChip::<F,N>::configure(meta, [col_x, col_y, col_accum], instance, constant)
}
fn synthesize(&self, config: Self::Config, mut layouter: impl Layouter<F>) -> Result<(), Error> {
let chip = AdventChip::construct(config);
// Assign returns the last row from col_accum that contains the total accumulated score,
// which we expose by matching it to the public instance that corresponds to round N-1
let out_cell = chip.assign(layouter.namespace(|| "rps"), self.xs, self.ys)?;
chip.expose_public(layouter.namespace(|| "out"), &out_cell, N-1)?;
Ok(())
}
}
// Returns the circuit configured with the private inputs, and the public inputs
fn make_circuit<const N: usize>(xs: [u64; N], ys: [u64; N], out: u64) -> (AdventCircuit<Fp, N>, Vec<Vec<Fp>>) {
// The plays in each round are the private inputs to the circuit
let circuit = AdventCircuit {
xs: xs.map(|val| Value::known(Fp::from(val))),
ys: ys.map(|val| Value::known(Fp::from(val))),
};
// We can fill the public instances with zeros up until the last score,
// since we only care about the total accumulated at the end of all rounds
let mut outs = vec![Fp::zero(); N];
outs[N-1] = Fp::from(out);
(circuit, vec![outs])
}
// Draws the circuit into the img folder
fn draw_circuit<F: PrimeField, const N: usize>(circuit: &AdventCircuit<F,N>) {
use plotters::prelude::*;
let root = BitMapBackend::new("img/advent2-layout.png", (1024, 3096)).into_drawing_area();
root.fill(&WHITE).unwrap();
let root = root.titled("Advent2 Layout", ("sans-serif", 60)).unwrap();
halo2_proofs::dev::CircuitLayout::default()
.render(4, circuit, &root)
.unwrap();
}
fn main() {
let k = 4;
let xs = [0,1,2];
let ys = [1,0,2];
let out = 15;
let (circuit, public_input) = make_circuit(xs, ys, out);
draw_circuit(&circuit);
MockProver::run(k, &circuit, public_input).unwrap().assert_satisfied();
}