This repository has been archived by the owner on Mar 1, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLittleMan.java
737 lines (632 loc) · 24.4 KB
/
LittleMan.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
package mnkgame;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Random;
import java.util.Stack;
import java.util.concurrent.atomic.AtomicBoolean;
// NOTE: the code uses vim's marker folding. Use `za` to toggle folds.
public class LittleMan implements MNKPlayer {
private static final int INFTY = 1_000_000_000; // 1 Billion
// Out of bounds value used to denote a timeout in the search
private static final int HALT = -INFTY * 2; // -2 Billion
// NOTE: tweak as needed to prevent exceeding time limits.
private static final double SAFETY_THRESHOLD = 0.95;
// Transposition table keys are hashed using the Zobrist technique
// Cache entry structure: [marked, lastCell, searchDepth, type, value]
// Marked and lastCell are used to avoid collisions. Type can be one of:
// EXACT_VALUE => value is the exact evaluation of the board
// UPPER_BOUND => value is the upper bound
// LOWER_BOUND => value is the lower bound
private static final int EXACT_VALUE = 0, UPPER_BOUND = 1, LOWER_BOUND = -1;
private HashMap<Long, int[]> cache = new HashMap<>();
// Zobrist key fragments generated randomly during init
private long[][] zobrist;
private AtomicBoolean isZobristReady = new AtomicBoolean(false);
private MNKGameState MY_WIN, ENEMY_WIN;
private int M, N, K, minMN;
private Random random;
private Board board;
private long startTime, timeout;
// Return true when we're close to running out of time (as defined by the
// SAFETY_THRESHOLD constant).
private boolean shouldHalt() {
return (System.currentTimeMillis() - startTime) >= timeout;
}
public String playerName() {
return "Little Man";
}
// {{{ board
// An extension of the provided MNKBoard to account for incremental hash
// generation and board evaluation. All methods have been implemented in such
// a way to maintain the same asymptotic cost of the original implementation.
private class Board extends MNKBoard {
// Zobrist hash value
private long key = 0;
// Heuristic value and previous values (for fast unmakes)
private final Stack<Integer> previousValues = new Stack<>();
private int value = 0;
private final boolean first;
private final int minMN;
public Board(int M, int N, int K, int minMN, boolean first) {
super(M, N, K);
this.minMN = minMN;
this.first = first;
}
// Returns the depth of this board relative to the root.
public int marked() {
return MC.size();
}
@Override
public MNKGameState markCell(int i, int j) {
return markCell(i, j, true);
}
// Marks the given cell at (i, j) via callin the super methods, but also
// computes the new Zobrist key and the new statc value of the match.
// Cost: O(max{M, N}) because of `markCell` and `eval`
public MNKGameState markCell(final int i, final int j, final boolean updateInternals) {
// Mind the order of the calls
if (updateInternals) {
key = nextZobrist(i, j);
previousValues.push(value);
value -= eval(i, j);
}
MNKGameState result = super.markCell(i, j);
if (updateInternals)
value += eval(i, j);
return result;
}
@Override
public void unmarkCell() {
unmarkCell(true);
}
// Ummarks the last move and restores the previous hash and evaluation values.
// Cost: O(1)
public void unmarkCell(final boolean updateInternals) {
// Mind the order of the calls
MNKCell last = MC.getLast();
super.unmarkCell();
if (updateInternals) {
key = nextZobrist(last.i, last.j);
value = previousValues.pop();
}
}
// Computes the hash for a new mark. We can use this same method to both do
// and undo the hash value, thanks to the properties of the XOR gate.
// Care must be taken _when_ calling this as it relies on the currentPlayer
// being correctly set to the one who has done/is undoing the move.
public long nextZobrist(final int i, final int j) {
return key ^ zobrist[i * minMN + j][(currentPlayer + 1) % 2];
}
// Returns the Zobrist hash value for the current board
public long zobrist() {
return key;
}
private int n1 = 0, n2 = 0, nFree = 0;
// Assigns aribrary high values to k-3, k-2, and k-1 series to make them
// stand out from others and help the search move towards creating longer
// streaks
private int largeSeriesConstant() {
if (K > 4 && nFree == 3)
return 1_000; // 1k
if (K > 3 && nFree == 2)
return 100_000; // 100k
if (K > 2 && nFree == 1)
return 10_000_000; // 10M
return 0;
}
// Used in the alternative evaluation technique
/* // Returns wheter the given (i,j) position is within the bounds of the
* // current board. Cost: O(1)
* private boolean isInBounds(int i, int j) {
* return i >= 0 && i < M && j >= 0 && j < N;
* }
*/
// Values the series which ends at the given cell. dI and dJ denote the
// increment which can be used to deduce previous cells in the series.
// Cost: O(1)
private int cellValue(final int i, final int j, final int dI, final int dJ) {
if (nFree + n1 + n2 >= K) {
MNKCellState s = B[i - dI * K][j - dJ * K];
if (s == MNKCellState.FREE)
nFree--;
else if (s == MNKCellState.P1)
n1--;
else
n2--;
}
if (B[i][j] == MNKCellState.FREE)
nFree++;
else if (B[i][j] == MNKCellState.P1)
n1++;
else
n2++;
// Alternative evaluation which also takes free cells around the series
// into account.
/* if (n1 + nFree == K || n2 + nFree == K) {
* int freeFactor = 0;
* // Check if the cell after the series is free
* if (isInBounds(i + dI, j + dJ) &&
* B[i + dI][j + dJ] == MNKCellState.FREE)
* freeFactor += 100;
* // Check if the cell before the series is free
* if (isInBounds(i - dI * K, j - dJ * K) &&
* B[i - dI * K][j - dJ * K] == MNKCellState.FREE)
* freeFactor += 100;
*
* int sign = first ? 1 : -1;
* if (n1 + nFree == K)
* return sign * (largeSeriesConstant() + (n1 * n1) + freeFactor);
* else
* return -sign * (largeSeriesConstant() + (n2 * n2) + freeFactor);
* } else return 0;
*/
int sign = first ? 1 : -1;
if (n1 + nFree == K)
return sign * (largeSeriesConstant() + (n1 * n1));
else if (n2 + nFree == K)
return -sign * (largeSeriesConstant() + (n2 * n2));
else
return 0;
}
// Evaluates the row, column and diangonals which cross at (i, j). It checks
// all the cells in these directions, not just up to a k radius distance.
// Therefore the cost is O(max{m, n})
private int eval(final int i, final int j) {
int value = 0;
// Column
n1 = n2 = nFree = 0;
for (int ii = 0; ii < M; ii++)
value += cellValue(ii, j, 1, 0);
// Row
n1 = n2 = nFree = 0;
for (int jj = 0; jj < N; jj++)
value += cellValue(i, jj, 0, 1);
// Diagonal
int ku = Math.min(i, j),
kl = Math.min(M - i - 1, N - j - 1),
ii = i - ku,
jj = j - ku,
iim = i + kl,
jjm = j + kl;
n1 = n2 = nFree = 0;
for (; ii <= iim && jj <= jjm; ii++, jj++)
value += cellValue(ii, jj, 1, 1);
// Anti-diagonal
ii = i - ku;
jj = j + ku;
iim = i + kl;
jjm = j - kl;
n1 = n2 = nFree = 0;
for (; ii <= iim && jj <= jjm; ii++, jj--)
value += cellValue(ii, jj, 1, -1);
return value;
}
public int value() {
return value;
}
}
// }}}
// {{{ transposition cleanup
// The reference to the currently running cleanup thread
private Thread cleanupThread = null;
// Runnable which cleans up any cached boards with less marked cells than the
// current amount + 1 (the one played by the enemy). These boards are
// effectively useless as MiniMax won't reach them again and they only
// increase the chance of having cache conflicts.
private class CleanupRunnable implements Runnable {
private final long endTime;
private final int marked;
public CleanupRunnable(long endTime, int marked) {
this.endTime = endTime;
this.marked = marked;
}
private boolean shouldHalt() {
return System.currentTimeMillis() >= endTime;
}
// Iterate over all cached entries in our time limit and remove any board
// which is deemed no longer needed.
@Override
public void run() {
Iterator<Map.Entry<Long, int[]>> iter = cache.entrySet().iterator();
while (iter.hasNext()) {
if (Thread.currentThread().isInterrupted() || shouldHalt())
break;
Map.Entry<Long, int[]> e = iter.next();
if (e.getValue()[0] <= marked + 1)
iter.remove();
}
}
}
// Starts the cache cleanup in another thread for the given time limit and
// amount of currently marked cells.
private void cleanup(long endTime, int marked) {
stopCleanup();
cleanupThread = new Thread(new CleanupRunnable(endTime, marked));
cleanupThread.start();
}
// Stops the cleanup forcefully by sending an interrupt to the thread. We have
// no interest in stopping gracefully and want this to complete as fast as
// possible.
private void stopCleanup() {
if (cleanupThread != null && cleanupThread.isAlive())
cleanupThread.interrupt();
try {
cleanupThread.join();
} catch (Exception e) {
}
cleanupThread = null;
}
// }}}
// {{{ init
@Override
public void initPlayer(int M, int N, int K, boolean first, int timeoutInSecs) {
this.M = M;
this.N = N;
this.K = K;
minMN = Math.min(M, N);
MY_WIN = first ? MNKGameState.WINP1 : MNKGameState.WINP2;
ENEMY_WIN = first ? MNKGameState.WINP2 : MNKGameState.WINP1;
random = new Random(startTime);
board = new Board(M, N, K, minMN, first);
timeout = (long) (timeoutInSecs * 1000 * SAFETY_THRESHOLD);
startTime = System.currentTimeMillis();
stopCleanup();
cache.clear();
// If necessary, continue filling the table for the zobrist hashing function
// in another thread to avoid failing initialization.
isZobristReady.set(false);
zobrist = new long[M * N][2];
int i;
for (i = 0; i < zobrist.length; i++) {
if (i % 10 == 0 && shouldHalt()) // check every 10 iterations
break;
zobrist[i][0] = random.nextLong();
zobrist[i][1] = random.nextLong();
}
// If the previous loop didn't manage to fill the table in time we continue
// the process in a separate thread. We can safely modify the zobrist array
// across threads as it's only read from after the `isZobristReady` field
// gets set to true
if (i < zobrist.length - 1) {
final int j = i;
new Thread(() -> {
for (int k = j; k < zobrist.length; k++) {
zobrist[k][0] = random.nextLong();
zobrist[k][1] = random.nextLong();
}
isZobristReady.set(true);
}).start();
} else
isZobristReady.set(true);
}
// }}}
// {{{ one-cell threats
// Looks at all cells and finds the one which completes a k-1 series to achieve
// the given `winState`. Cost: O(free cells), O(M*N) in the worst case
private MNKCell findOneMoveWin(final MNKGameState winState) {
for (MNKCell c : board.getFreeCells()) {
MNKGameState result = board.markCell(c.i, c.j, false);
board.unmarkCell(false);
if (result == winState)
return c;
}
return null;
}
// Tries any available cell and returns it if it doesn't change the
// immediate outcome of the game. Cost: O(free cells), O(M*N) in the worst case.
private MNKCell pickRandomNonClosingCell(final MNKCell previous) {
for (MNKCell c : board.getFreeCells()) {
MNKGameState result = board.markCell(c.i, c.j, false);
board.unmarkCell(false);
if (result == MNKGameState.OPEN && (previous == null || previous.i != c.i || previous.j != c.j))
return c;
}
return null;
}
// Finds a possible cell with which the enemy can complete a k-1 series and win
// Cost: O(free cells), O(M*N) in the worst case
private MNKCell findOneMoveLoss(final MNKGameState lossState) {
MNKCell randomCell = null;
// Can't check two moves ahead when there aren't enough moves
if (board.getFreeCells().length <= 2 || (randomCell = pickRandomNonClosingCell(null)) == null)
return null;
board.markCell(randomCell.i, randomCell.j, false);
MNKCell c = findOneMoveWin(lossState);
board.unmarkCell(false);
if (c != null)
return c;
// Test the randomCell we selected at first. It may be a one-move loss cell.
// Get a new random cell, different from the previous, and try with that
MNKCell cc = pickRandomNonClosingCell(randomCell);
if (cc == null)
return null;
board.markCell(cc.i, cc.j, false);
// Look at the result of the enemy marking the initial random cell
MNKGameState result = board.markCell(randomCell.i, randomCell.j, false);
board.unmarkCell(false);
board.unmarkCell(false);
return result == lossState ? randomCell : null;
}
// }}}
// {{{ moves ordering
// Evaluate a state, either heuristically or in a deterministic way.
// Cost: O(1)
private int evaluate() {
MNKGameState state = board.gameState();
if (state == MNKGameState.DRAW)
return 0;
else if (state == MY_WIN)
return INFTY / board.marked();
else if (state == ENEMY_WIN)
return -INFTY / board.marked();
else
return Math.min(Math.max(board.value(), -(INFTY / 10)), INFTY / 10) / board.marked();
}
// Swaps vec[a] with vec[b]. Cost: O(1)
private <T> void swap(final T[] vec, final int a, final int b) {
if (a == b)
return;
T tmp = vec[a];
vec[a] = vec[b];
vec[b] = tmp;
}
// Swaps vec[a] with vec[b]. Cost: O(1)
// Copy of the above with native type
private void swap(final int[] vec, final int a, final int b) {
int tmp = vec[a];
vec[a] = vec[b];
vec[b] = tmp;
}
// Single-step Selection Sort for an array of MNKCells and relative evaluation
// scores. It only applies one step of the Selection Sort algorithm, positioning
// the minimum/maximum (based on the color) of the vector in the `start`
// position.
// Cost: O(end-start)
public void selectionSort(final MNKCell[] vec, final int[] values, final int start, final int end, final int color) {
int m = start;
// Find the max/min in [start,end]
for (int i = start + 1; i < end; i++)
if (color > 0 ? values[i] > values[m] : values[i] < values[m])
m = i;
// Swap vec[m] with vec[start] if we found a new max/min
if (m != start) {
swap(vec, start, m);
swap(values, start, m);
}
}
// Selects a random item in the vector [start,end] and swaps it with the
// item found at the `start` position. Cost: O(1)
public void randomSelection(final MNKCell[] vec, final int start, final int end) {
int i = start + random.nextInt(end - start);
if (i != start)
swap(vec, start, i);
}
// Rates the moves based on previous iterations and "divides" the array into
// two sections. From [0,j-1] we have moves which are available in the
// transposition table, from [j,length-1] we have moves which are unvalued.
// Cost: O(n) where n = cells.length assuming transposition lookup is constant
private int rateMoves(final MNKCell[] cells, final int[] ratings, final int searchDepth) {
// i is the index for the next rated cell. j is the index for the next unrated
// cell.
int j = cells.length, i = 0;
while (i < j) {
int entry[] = transposition(board.nextZobrist(cells[i].i, cells[i].j), board.marked() + 1,
cells[i].i * minMN + cells[i].j, searchDepth - 1);
if (entry[3] != 2) {
ratings[i] = entry[4];
i++;
} else {
swap(cells, i, j - 1);
ratings[j - 1] = 0;
j--;
}
}
return j;
}
// }}}
// {{{ Principal Variation Search for subtrees
// Retrieves an entry from the transposition table if available. Otherwise falls
// back to a mock entry which can be filled and later saved. Cost: O(1)
private int[] transposition(final int searchDepth) {
MNKCell[] c = board.getMarkedCells();
return transposition(board.zobrist(), board.marked(), c[c.length - 1].i * minMN + c[c.length - 1].j, searchDepth);
}
// Returns a cache entry for the current board. If the current board is already
// in the transposition table the entry contains the actual data, otherwhise
// its fields 2,3 are dummy. A non-cached board can be therefore identified
// by entry[3] == 2. Cost: O(1)
private int[] transposition(final long hash, final int marked, final int lastCell, final int searchDepth) {
if (isZobristReady.get() && cache.containsKey(hash)) {
int[] cached = cache.get(hash);
// Make sure the board has the same number of marked symbols and the last
// cell marked matches. This is done to avoid false positives in the cache
if (cached[0] == marked && cached[1] == lastCell && cached[2] >= searchDepth
// useless
&& cached[3] != 2)
return cached;
}
return new int[] { marked, lastCell, searchDepth, 2, -INFTY };
}
// Principal Variation Search with a NegaMax-like framework for bounds.
private int pvs(final int color, final int depth, int alpha, int beta) {
MNKCell c;
int prevAlpha = alpha, value = -INFTY;
// Transposition table lookup
int[] entry = transposition(depth);
if (entry[3] != 2) {
if (entry[3] == EXACT_VALUE)
return entry[4];
else if (entry[3] == LOWER_BOUND)
alpha = Math.max(alpha, entry[4]);
else
beta = Math.max(beta, entry[4]);
if (alpha >= beta)
return entry[4];
}
if (shouldHalt())
return HALT;
else if (depth <= 0 || board.gameState() != MNKGameState.OPEN)
return color * evaluate();
else if (board.marked() >= 2 * K - 1 && ((c = findOneMoveWin(color > 0 ? MY_WIN : ENEMY_WIN)) != null
|| (c = findOneMoveLoss(color > 0 ? ENEMY_WIN : MY_WIN)) != null)) {
board.markCell(c.i, c.j);
value = -pvs(-color, depth - 1, -beta, -alpha);
board.unmarkCell();
} else {
MNKCell[] moves = board.getFreeCells();
int[] ratings = new int[moves.length];
// Moves are sorted up to the given intereger
int sortUpTo = rateMoves(moves, ratings, depth);
for (int i = 0; i < moves.length; i++) {
// If we are 0 <= i < sortedUpTo we can find the best sorted move via a
// selectionSort call. Otherwise we pick a random one from [sortedUpTo,
// length-1]
if (i < sortUpTo)
selectionSort(moves, ratings, i, sortUpTo, color);
else
randomSelection(moves, i, moves.length);
// NOTE: alpha is only updated when we have a full window search result
// to avoid messing up bounds.
board.markCell(moves[i].i, moves[i].j);
int score;
if (i == 0) {
score = -pvs(-color, depth - 1, -beta, -alpha);
alpha = Math.max(alpha, score);
} else {
// Try a null window search on non-PV nodes with bounds [-alpha-1, -alpha]
score = -pvs(-color, depth - 1, -alpha - 1, -alpha);
// If the search failed inside the [alpha, beta] bounds the result may
// be meaningful so we need to do a proper search.
if (score > alpha && score < beta && value != HALT) {
score = -pvs(-color, depth - 1, -beta, -alpha);
alpha = Math.max(alpha, score);
}
}
board.unmarkCell();
// To catch HALT signals we treat them as an always-better score value.
// We're fine with this as the search will be ignored by Iterative Deepening.
if (score > value || score == HALT || score == -HALT)
value = score;
if (value >= beta || value == HALT || value == -HALT)
break;
}
}
if (value == HALT)
return HALT;
entry[2] = depth;
entry[4] = value;
if (value <= prevAlpha)
entry[3] = UPPER_BOUND;
else if (value >= beta)
entry[3] = LOWER_BOUND;
else
entry[3] = EXACT_VALUE;
cache.put(board.zobrist(), entry);
return value;
}
// }}}
// {{{ Principal Variation Search on root
// pvsRoot runs a standard Principal Variation Search on the root node,
// keeping track of both the best score and its relative cell.
private MNKCell pvsRoot(final int depth, int alpha, int beta) {
MNKCell cell = null;
int value = -INFTY;
if (shouldHalt())
return null;
else if (board.marked() >= 2 * K - 1
&& ((cell = findOneMoveWin(MY_WIN)) != null || (cell = findOneMoveLoss(ENEMY_WIN)) != null)) {
board.markCell(cell.i, cell.j);
value = -pvs(-1, depth - 1, -beta, -alpha);
board.unmarkCell();
} else {
MNKCell[] moves = board.getFreeCells();
int[] ratings = new int[moves.length];
// Moves ordering is identical to non-root subtrees
int sortUpTo = rateMoves(moves, ratings, depth);
for (int i = 0; i < moves.length; i++) {
if (i < sortUpTo)
selectionSort(moves, ratings, i, sortUpTo, 1);
else
randomSelection(moves, i, moves.length);
// NOTE: alpha is only updated when we make a proper full window search
// to avoid wrong bounds.
board.markCell(moves[i].i, moves[i].j);
int score;
if (i == 0) {
score = -pvs(-1, depth - 1, -beta, -alpha);
alpha = Math.max(alpha, score);
} else {
// Try a null window search on non-PV nodes with bounds [-alpha-1, -alpha]
score = -pvs(-1, depth - 1, -alpha - 1, -alpha);
// If the search failed inside the [alpha, beta] bounds the result may
// be meaningful so we need to do a proper search
if (score > alpha && score < beta && value != HALT) {
score = -pvs(-1, depth - 1, -beta, -alpha);
alpha = Math.max(alpha, score);
}
}
board.unmarkCell();
if (score == HALT || score == -HALT)
return null;
if (score > value) {
value = score;
cell = moves[i];
}
if (value >= beta)
break;
}
}
return cell;
}
// }}}
// {{{ iterative deepening
// Iterative Deepening calls the pvsRoot depth-first search algorithm with an
// ever-increasing maximum depth, to search the tree as deep as we can and
// provide insights about move ordering for future searches.
// The search is stopped on timeout or when the maximum depth is reached.
public MNKCell iterativeDeepening() {
final int len = board.getFreeCells().length;
MNKCell value = null;
int maxDepth = 1;
while (!shouldHalt() && maxDepth <= len) {
// The alpha and beta values are given by the highest and lowest possible
// achievable values with our evaluation function. We can lower these bounds
// from INFTY as our evaluation function takes into account depth, and
// therefore get more cutoffs.
int max = INFTY / Math.min(board.marked() + maxDepth, 2 * K - 1);
MNKCell latest = pvsRoot(maxDepth, -max, max);
if (latest == null)
break;
// Save the latest value and increment the depth for the next iteration
value = latest;
maxDepth++;
}
return value;
}
// }}}
// {{{ selectCell
public MNKCell selectCell(MNKCell[] FC, MNKCell[] MC) {
// Prepare the transposition table and the timeout handling for the new search
startTime = System.currentTimeMillis();
stopCleanup();
// Keep track of the opponent's marked cells
int len = MC.length;
if (len > 0)
board.markCell(MC[len - 1].i, MC[len - 1].j);
// Search the best move with an iterative deepening framework
MNKCell result = iterativeDeepening();
// Avoid catastrophic failures in case anything breaks. This condition
// should never be reached, nonetheless it safer having it.
if (result == null)
result = FC[new Random().nextInt(FC.length)];
// If the game is not over and we are not in the closing moves of a game
// start the cleanup of the cache in another thread. It will run during the
// enemy's turn.
if (board.markCell(result.i, result.j) == MNKGameState.OPEN && board.marked() < M * N - 3)
cleanup(System.currentTimeMillis() + timeout, board.marked());
return result;
}
// }}}
}
// vim: ts=2 sw=2 fdm=marker