-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathedge_benchmark-udemy-sa-git.py
132 lines (107 loc) · 4 KB
/
edge_benchmark-udemy-sa-git.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Vanilla deep network
# https://deeplearningcourses.com/c/deep-learning-convolutional-neural-networks-theano-tensorflow
# https://udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
from __future__ import print_function, division
from builtins import range
# Note: you may need to update your version of future
# sudo pip install -U future
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from scipy.signal import convolve2d
from scipy.io import loadmat
from sklearn.utils import shuffle
from benchmark import error_rate
Hx = np.array([
[-1, 0, 1],
[-2, 0, 2],
[-1, 0, 1],
], dtype=np.float32)
# Sobel operator - approximate gradient in Y dir
Hy = np.array([
[-1, -2, -1],
[0, 0, 0],
[1, 2, 1],
], dtype=np.float32)
def convolve_flatten(X):
# input will be (32, 32, 3, N)
# output will be (N, 32*32)
N = X.shape[-1]
flat = np.zeros((N, 32*32))
for i in range(N):
#flat[i] = X[:,:,:,i].reshape(3072)
bw = X[:,:,:,i].mean(axis=2) # make it grayscale
Gx = convolve2d(bw, Hx, mode='same')
Gy = convolve2d(bw, Hy, mode='same')
G = np.sqrt(Gx*Gx + Gy*Gy)
G /= G.max() # normalize it
flat[i] = G.reshape(32*32)
return flat
def main():
train = loadmat('../large_files/train_32x32.mat')
test = loadmat('../large_files/test_32x32.mat')
# Need to scale! don't leave as 0..255
# Y is a N x 1 matrix with values 1..10 (MATLAB indexes by 1)
# So flatten it and make it 0..9
# Also need indicator matrix for cost calculation
Xtrain = convolve_flatten(train['X'].astype(np.float32))
Ytrain = train['y'].flatten() - 1
Xtrain, Ytrain = shuffle(Xtrain, Ytrain)
Xtest = convolve_flatten(test['X'].astype(np.float32))
Ytest = test['y'].flatten() - 1
# gradient descent params
max_iter = 6
print_period = 10
N, D = Xtrain.shape
batch_sz = 500
n_batches = N // batch_sz
# initial weights
M1 = 1000 # hidden layer size
M2 = 500
K = 10
W1_init = np.random.randn(D, M1) / np.sqrt(D + M1)
b1_init = np.zeros(M1)
W2_init = np.random.randn(M1, M2) / np.sqrt(M1 + M2)
b2_init = np.zeros(M2)
W3_init = np.random.randn(M2, K) / np.sqrt(M2 + K)
b3_init = np.zeros(K)
# define variables and expressions
X = tf.placeholder(tf.float32, shape=(None, D), name='X')
T = tf.placeholder(tf.float32, shape=(None, K), name='T')
W1 = tf.Variable(W1_init.astype(np.float32))
b1 = tf.Variable(b1_init.astype(np.float32))
W2 = tf.Variable(W2_init.astype(np.float32))
b2 = tf.Variable(b2_init.astype(np.float32))
W3 = tf.Variable(W3_init.astype(np.float32))
b3 = tf.Variable(b3_init.astype(np.float32))
Z1 = tf.nn.relu( tf.matmul(X, W1) + b1 )
Z2 = tf.nn.relu( tf.matmul(Z1, W2) + b2 )
Yish = tf.matmul(Z2, W3) + b3
cost = tf.reduce_sum(
tf.nn.sparse_softmax_cross_entropy_with_logits(
logits=Yish,
labels=T
)
)
train_op = tf.train.RMSPropOptimizer(0.0001, decay=0.99, momentum=0.9).minimize(cost)
# we'll use this to calculate the error rate
predict_op = tf.argmax(Yish, 1)
LL = []
init = tf.global_variables_initializer()
with tf.Session() as session:
session.run(init)
for i in range(max_iter):
for j in range(n_batches):
Xbatch = Xtrain[j*batch_sz:(j*batch_sz + batch_sz),]
Ybatch = Ytrain[j*batch_sz:(j*batch_sz + batch_sz),]
session.run(train_op, feed_dict={X: Xbatch, T: Ybatch})
if j % print_period == 0:
test_cost = session.run(cost, feed_dict={X: Xtest, T: Ytest})
prediction = session.run(predict_op, feed_dict={X: Xtest})
err = error_rate(prediction, Ytest)
print("Cost / err at iteration i=%d, j=%d: %.3f / %.3f" % (i, j, test_cost, err))
LL.append(test_cost)
plt.plot(LL)
plt.show()
if __name__ == '__main__':
main()