forked from ldecicco-USGS/passive_tox
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexplore_mix.Rmd
220 lines (160 loc) · 5.34 KB
/
explore_mix.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
---
title: "Explore Mixtures Latest"
output:
bookdown::word_document2:
fig_caption: yes
toc: yes
editor_options:
chunk_output_type: console
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = FALSE,
message = FALSE,
warning = FALSE,
fig.width = 7,
fig.height = 5)
library(tidyverse, quietly = TRUE)
library(rpart, quietly = TRUE)
library(party, quietly = TRUE)
library(partykit, quietly = TRUE)
library(rpartScore, quietly = TRUE)
library(readxl, quietly = TRUE)
library(flextable, quietly = TRUE)
# library(subselect) #sim annealing
library(leaps, quietly = TRUE) #regsubsets
library(glmnet, quietly = TRUE)
library(toxEval)
library(corrplot, quietly = TRUE)
library(here)
source(here("R/mixtures/mix_script.R"))
source(here("R/mixtures/prepare_mixture_data.R"))
source(file = "read_chemicalSummary.R")
source(file = "R/analyze/open_land_use.R")
n_sites <- 7
EAR_thresh <- 0.001
df <- get_final_mixtures(chemicalSummary,
EAR_thresh,
n_sites)
```
## Final mixture table
```{r joinedEVERYTHING}
df_flex <- flextable(df)
autofit(df_flex)
```
```{r openLand}
df_lu <- open_land_use()
```
```{r corLU, results="asis"}
big_enough <- function(x, thresh = 2){
max(x, na.rm = TRUE) > thresh
}
df_lu_filtered <- df_lu %>%
select(-site) %>%
select_if(big_enough) %>%
bind_cols(select(df_lu, frac_2010, frac_2014))
M <- cor(df_lu_filtered)
corrplot(M, type="upper", tl.cex = 0.5)
```
Reduce the variables by those that have a corrolation coefficient > 0.9 or < -0.9.
```{r corLU_reduced, results="asis"}
lu_vars <- colnames(M)
lu_vars_rev <- rev(lu_vars)
exclude <- c()
exclude_rev <- c()
for(i in seq_along(lu_vars)){
check_var <- lu_vars[i]
if(check_var %in% exclude){
next
} else {
check_cor <- names(which(M[,check_var] > 0.8 |
M[,check_var] < -0.8))
check_cor <- check_cor[check_cor != check_var]
exclude <- c(exclude, check_cor)
}
}
df_lu_filtered <- df_lu_filtered[,-which(names(df_lu_filtered) %in% exclude)]
M2 <- cor(df_lu_filtered)
corrplot(M2, type="upper", tl.cex = 0.5)
```
Now, we use the sites with detections and filter out variables that don't have a single site left that doesn't have 10% of that category.
```{r corLU_manual, results="asis"}
df_lu_filtered <- bind_cols(df_lu[,c("site","Urban","Crops")],
df_lu_filtered) %>%
select(-Basin_Area_mi2, -Population_Density)
all_chemicals_in_mixtures <- unique(unlist(df$Chemicals))
big_enough <- function(x, thresh = 10){
max(x, na.rm = TRUE) > thresh
}
cs_mix <- chemicalSummary %>%
filter(chnm %in% all_chemicals_in_mixtures,
EAR > 0) %>%
select(site) %>%
distinct() %>%
left_join(df_lu_filtered, by = "site") %>%
select(-site) %>%
select_if(big_enough)
auto_categories <- names(cs_mix)
```
If we were going to fine-tune the categories, we'd do it here!
```{r showCats}
auto_categories
```
```{r trees, results="asis"}
chemicalSummary <- chemicalSummary %>%
filter(site != "04010500") #half this watershed is in Canada, so the landuse stuff is/could be way off
for(i in seq_len(nrow(df))){
chems <- unlist(df$Chemicals[i])
mixture <- paste(chems, collapse = ",")
endpoint <- df$Assay[i]
cat("\n")
cat("\n##", mixture,"\n")
mixture <- paste(chems, collapse = ",\n")
sub_df <- chemicalSummary %>%
filter(endPoint == {{endpoint}},
EAR > 0) %>%
group_by(site, shortName, date) %>%
summarize(sumEAR = sum(EAR)) %>%
group_by(site, shortName) %>%
summarize(maxEAR = max(sumEAR)) %>%
left_join(df_lu_filtered, by = "site") %>%
mutate(mix_st = mixture,
lowEAR = maxEAR,
highEAR = maxEAR) %>%
ungroup()
cat("\n")
cat("\n### Tree\n")
form_bigger_lm <- formula(paste("maxEAR ~ ",
paste(auto_categories,
collapse = " + ")))
tree_return <- plot_trees(form_bigger_lm, sub_df, endpoint)
cat("\n")
cat("\n### Linear\n")
new_form_lm <- get_formula(sub_df, auto_categories,
sumEAR = "maxEAR",
lasso = FALSE, survival = FALSE)
new_form_surv <- get_formula(sub_df, auto_categories,
sumEAR = "maxEAR",
lasso = FALSE)
form_surv <- reformulate(termlabels = attr(terms(new_form_surv),"term.labels"),
response = 'survival::Surv(lowEAR,
highEAR,
type="interval2")')
x_df <- plot_lm(new_form_lm,
form_surv,
sumEAR = "maxEAR",
sub_df = sub_df)
cat("\n")
cat("\n#### Log\n")
cat("\n")
new_form_lm_log <- get_formula(sub_df, auto_categories,
sumEAR = "maxEAR", log = TRUE,
lasso = FALSE, survival = FALSE)
new_form_surv_log <- get_formula(sub_df, auto_categories,
sumEAR = "maxEAR", log = TRUE,
lasso = FALSE)
x_df_log <- plot_lm(new_form_lm_log,
new_form_surv_log,
sumEAR = "maxEAR",
sub_df = sub_df, log = TRUE)
}
```