forked from lazierthanthou/Lecture_Notes_GR
-
Notifications
You must be signed in to change notification settings - Fork 2
/
lecture22.tex
172 lines (124 loc) · 5.2 KB
/
lecture22.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
\section{Lecture 22: \underline{Black Holes}}
Only depends on Lectures 1-15, so does lecture on ``Wednesday''
Schwarzschild solution also vacuum solution (from tutorial EY : oh no, must do tutorial)
Study the Schwarzschild as a vacuum solution of the Einstein equation:
$m = G_N M$ where $M$ is the ``mass''
\[
g = \left( 1 - \frac{2m}{r} \right) dt \otimes dt - \frac{1}{ 1 - \frac{2m}{r} } dr \otimes dr - r^2 ( d\theta \otimes d\theta + \sin^2{\theta} d\varphi \otimes d\varphi
\]
in the so-called \underline{Schwarzschild coordinates} $\begin{aligned} & & & & \quad \\
t \quad & r \quad & \theta \quad & \varphi \\
(-\infty,\infty) \quad & (0,\infty) \quad & (0,\pi) \quad & (0,2\pi) \end{aligned}$
What staring at this metric for a while, two questions naturally pose themselves:
\begin{enumerate}
\item[(i)] What exactly happens \@ $r= 2m$?
$\begin{aligned} & & & & \quad \\
t \quad & r \quad & \theta \quad & \varphi \\
(-\infty,\infty) \quad & (0,2m) \cup ( 2m, \infty) \quad & (0,\pi) \quad & (0,2\pi) \end{aligned}$
\item[(ii)] Is there anything (in the real world) beyond $\begin{aligned} & \quad \\
& t \to -\infty \\
& t\to +\infty \end{aligned}$?
\underline{idea}: Map of Linz, blown up
Insight into these two issues is afforded by stopping to stare.
Look at \emph{geodesic} of $g$, instead.
\end{enumerate}
\subsection{Radial null geodesics}
null - $g(v_{\gamma},v_{\gamma} ) = 0$
Consider null geodesic in ``\underline{Schd}''
\[
S[\gamma ] = \int d\lambda \left[ \left( 1 - \frac{2m}{r} \right)\dot{t}^2 - \left(1 - \frac{2m}{r} \right)^{-1} \dot{r}^2 - r^2( \dot{\theta}^2 + \sin^2{\theta} \dot{\varphi}^2 ) \right]
\]
with $[\dots ] =0$
and one has, in particular, the $t$-eqn. of motion:
\[
\left( \left( 1- \frac{2m}{r} \right) \dot{t} \right)^{.} = 0
\]
$\Longrightarrow$
\[
\boxed{ \left( 1 - \frac{2m}{r} \right)\dot{t} = k } = \text{ const. }
\]
Consider \underline{radial} null geodesics \\
$\theta \overset{!}{=} \text{ const. }$ \quad \quad \, $\varphi = \text{ const. }$
From $\Box $ and $\Box $
\[
\Longrightarrow \dot{r}^2 = k^2 \leftrightarrow \dot{r} = \pm k
\]
\[
\Longrightarrow r(\lambda) = \pm k \cdot \lambda
\]
Hence, we may consider
\[
\widetilde{t}(r) := t(\pm k\lambda)
\]
\underline{Case A:} $\oplus$
\[
\frac{d\widetilde{t}}{dr} = \frac{ \dot{ \widetilde{t}} }{ \dot{r}} = \frac{k}{ \left( 1 - \frac{2m}{r} \right) k } = \frac{r}{r-2m}
\]
\[
\Longrightarrow \widetilde{t}_+(r) = r + 2m \ln{ |r-2m | }
\]
(\textbf{outgoing} null geodesics)
\underline{Case b.} $\pm$ (Circle around $-$, consider $-$):
\[
\widetilde{t}_-(r) = -r - 2m \ln{ |r - 2m | }
\]
(\textbf{ingoing} null geodesics)
Picture
\subsection{Eddington-Finkelstein}
Brilliantly simple idea:
change (on the domain of the Schwarzschild coordinates) to different coordinates, s.t. \\
in those new coordinates, \\
\emph{ingoing} null geodesics appear as straight lines, of slope $-1$
This is achieved by
\[
\bar{t}(t,r,\theta, \varphi) := t + 2m \ln{ | r-2m | }
\]
\underline{Recall}: ingoing null geodesic has
\[
\widetilde{t}(r) = -(r + 2m \ln{ |r-2m |} ) \quad \quad \, (Schd coords)
\]
\[
\Longleftrightarrow \bar{t} - 2m \ln{ |r-2m |} = -r - 2m \ln{ |r-2m |} + \text{ const. }
\]
\[
\therefore \bar{t} = -r + \text{ const. }
\]
(Picture)
\emph{outgoing} null geodesics
\[
\bar{t} = r + 4 m \ln{ |r - 2m| } + \text{ const. }
\]
Consider the new chart $(V,g)$ while $(U,x)$ was the Schd chart.
\[
\underbrace{U}_{\text{Schd}} \bigcup \lbrace \text{ horizon } \rbrace = V
\]
``chart image of the horizon''
Now calculate the \emph{Schd metric $g$ } w.r.t. Eddington-Finkelstein coords.
\[
\begin{aligned}
& \bar{t}(t,r,\theta,\varphi) = t + 2m\ln{ |r -2m | } \\
& \bar{r}(t,r,\theta,\varphi) = r \\
& \bar{\theta}(t,r,\theta,\varphi) = \theta \\
& \bar{\varphi}(t,r,\theta,\varphi) = \varphi
\end{aligned}
\]
EY : 20150422 I would suggest that after seeing this, one would calculate the metric by your favorite CAS. I like the Sage Manifolds package for Sage Math.
\href{https://github.com/ernestyalumni/diffgeo-by-sagemnfd/blob/master/Schwarzschild_BH.sage}{Schwarzschild\_BH.sage on github}
\href{https://www.patreon.com/file?s=645287&h=2254352&i=108637}{Schwarzschild\_BH.sage on Patreon}
\href{https://drive.google.com/file/d/0B1H1Ygkr4EWJdllTR3czQU9DeW8/view?usp=sharing}{Schwarzschild\_BH.sage on Google Drive}
\lstset{language=Python,basicstyle=\scriptsize\ttfamily,
commentstyle=\ttfamily\color{gray}}
\begin{lstlisting}[frame=single]
sage: load(``Schwarzschild_BH.sage'')
4-dimensional manifold 'M'
expr = expr.simplify_radical()
Levi-Civita connection 'nabla_g' associated with the Lorentzian metric 'g' on the 4-dimensional manifold 'M'
Launched png viewer for Graphics object consisting of 4 graphics primitives
\end{lstlisting}
Then calculate the Schwarzschild metric $g$ but in Eddington-Finkelstein coordinates. Keep in mind to calculate the set of coordinates that uses $\bar{t}$, not $\widetilde{t}$:
\begin{lstlisting}[frame=single]
sage: gI.display()
gI = (2*m - r)/r dt*dt - r/(2*m - r) dr*dr + r^2 dth*dth + r^2*sin(th)^2 dph*dph
sage: gI.display( X_EF_I_null.frame())
gI = (2*m - r)/r dtbar*dtbar + 2*m/r dtbar*dr + 2*m/r dr*dtbar + (2*m + r)/r dr*dr + r^2 dth*dth + r^2*sin(th)^2 dph*dph
\end{lstlisting}