-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbilliards_commented_ru.py
262 lines (217 loc) · 10.1 KB
/
billiards_commented_ru.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from fractions import Fraction as Frac # поддержка рациональных чисел
import matplotlib.pyplot as plt # библиотека для построения графиков
TOO_MANY_BORDERS = 70000
# Классы для хранения векторов, отрезков и пр.
class FracVec2:
def __init__(self, x, y):
self.x = Frac(x)
self.y = Frac(y)
def __add__(self, other):
return FracVec2(self.x + other.x, self.y + other.y)
def __sub__(self, other):
return FracVec2(self.x - other.x, self.y - other.y)
def __neg__(self):
return FracVec2(-self.x, -self.y)
def __rmul__(self, num):
return FracVec2(self.x * num, self.y * num)
def crs(self, other):
return self.x * other.y - self.y * other.x
def dot(self, other):
return self.x * other.x + self.y * other.y
def __eq__(self, other):
return (type(other) == type(self) and
self.x == other.x and self.y == other.y)
def reflect(self, other): # отражает объект other относительно точки self
if isinstance(other, Segment):
return Segment(self.reflect(other.begin), self.reflect(other.end))
if isinstance(other, Ray):
return Ray(self.reflect(other.begin), -other.vector)
return self - (other - self)
class Segment:
def __init__(self, begin, end):
self.begin = begin
self.end = end
def __contains__(self, point):
return (self.begin - point).dot(self.end - point) < 0
def as_ray(self): # необходимо для нахождения пересечений
return Ray(self.begin, self.end - self.begin)
def split_xy(self): # необходимо для построения картинки в matplotlib
return [self.begin.x, self.end.x], [self.begin.y, self.end.y]
def max_coord(self):
return max(max(abs(p.x), abs(p.y)) for p in [self.begin, self.end])
class Ray:
def __init__(self, begin, vector):
self.begin = begin
self.vector = vector
def __contains__(self, point):
vector = point - self.begin
return vector.crs(self.vector) == 0 and vector.dot(self.vector) >= 0
def intersection(self, other):
if self.vector.crs(other.vector) == 0:
return None
t = ((other.begin - self.begin).crs(other.vector) /
self.vector.crs(other.vector))
p = self.begin + t * self.vector
if t > 0 and p in other:
return p
return None
def as_ray(self): # необходимо для нахождения пересечений
return self
def cut(self, max_coord): # превращает в отрезок - для построения картинки
if self.vector.x == 0:
self.cut_y(max_coord)
else:
self.cut_x(max_coord)
if (self.begin.y + self.vector.y > max_coord or
self.begin.y + self.vector.y < -max_coord):
self.cut_y(max_coord)
return Segment(self.begin, self.begin + self.vector)
def cut_x(self, max_coord):
if self.vector.x > 0:
k = (max_coord - self.begin.x) / self.vector.x
else:
k = -(max_coord + self.begin.x) / self.vector.x
self.vector = k * self.vector
def cut_y(self, max_coord):
if self.vector.y > 0:
k = (max_coord - self.begin.y) / self.vector.y
else:
k = -(max_coord + self.begin.y) / self.vector.y
self.vector = k * self.vector
def max_coord(self):
return max(max(abs(p.x), abs(p.y))
for p in [self.begin, self.begin + self.vector])
class Zone: # для хранения областей, для которых T^-1 действует как движение
def __init__(self, corner, left_vector, right_vector):
self.corner = corner
self.left_vector = left_vector
self.right_vector = right_vector
self.prv = None # для хранения соседних областей
self.nxt = None
def __contains__(self, point):
v = point - self.corner
return v.crs(self.left_vector) > 0 and v.crs(self.right_vector) < 0
def get_left_ray(self):
return Ray(self.corner, self.left_vector)
def get_right_ray(self):
return Ray(self.corner, self.right_vector)
def intersection(self, ray):
p = ray.intersection(self.get_left_ray())
if p is not None:
return p
return ray.intersection(self.get_right_ray())
class Polygon:
def __init__(self, vertices):
self.size = len(vertices)
self.vertices = vertices
def get_edges(self):
return [Segment(self.vertices[i-1], self.vertices[i])
for i in range(self.size)]
# Главный класс с основной логикой
class Field:
def __init__(self, table):
self.table = table
self.zones = []
for i in range(table.size):
corner = table.vertices[i-1]
left = table.vertices[i-2] - corner
right = corner - table.vertices[i]
self.zones.append(Zone(corner, left, right))
for i in range(table.size):
self.zones[i].prv = self.zones[i-1]
self.zones[i-1].nxt = self.zones[i]
self.iteration = 0
self.borders = []
def find_borders(self, max_iteration):
# храним пары (граница, итерация)
self.borders = [(Ray(edge.end, edge.end - edge.begin), 1)
for edge in self.table.get_edges()]
# итерация здесь - первая не определённая итерация для точек границы
used_borders = 0 # храним, для скольки границ вычислена T^-1
while used_borders < len(self.borders):
border, iteration = self.borders[used_borders]
if iteration != self.iteration: # переходим к новой итерации
self.iteration = iteration
if iteration % 5 == 0:
print(f'Iteration {iteration}')
if iteration == max_iteration:
print(f'Finishing on iteration {iteration}')
print()
break
self.borders += [(zone.corner.reflect(border_part), iteration + 1)
for border_part, zone in self.split_border(border)]
used_borders += 1
if len(self.borders) == TOO_MANY_BORDERS:
max_iteration = iteration + 1
print(f'Got too many borders.')
def split_border(self, border, begin_zone=None):
if begin_zone is None: # при рекурсивном вызове begin_zone известна
begin_zone = self.get_begin_zone(border)
if begin_zone is None:
return []
intersection = begin_zone.intersection(border.as_ray())
if intersection is None:
return [(border, begin_zone)]
if isinstance(border, Ray):
border1 = Segment(border.begin, intersection)
border2 = Ray(intersection, border.vector)
elif intersection in border:
border1 = Segment(border.begin, intersection)
border2 = Segment(intersection, border.end)
else:
return [(border, begin_zone)]
if intersection in begin_zone.get_left_ray():
new_zone = begin_zone.prv
else:
new_zone = begin_zone.nxt
return [(border1, begin_zone)] + self.split_border(border2, new_zone)
def get_begin_zone(self, border):
for zone in self.zones:
if border.begin in zone:
return zone
if (border.begin in zone.get_left_ray() and
border.begin != zone.corner):
product = border.as_ray().vector.crs(zone.left_vector)
if product < 0:
return zone.prv
elif product > 0:
return zone
return None
def show(self, colour='black', linewidth=0.5):
field_size = max(border.max_coord() for border, _ in self.borders) * 2
x = [p.x for p in self.table.vertices]
y = [p.y for p in self.table.vertices]
plt.plot(x + [x[0]], y + [y[0]], colour, linewidth=linewidth)
plt.fill(x, y, colour)
n = len(self.borders)
for i, (border, _) in enumerate(self.borders):
if isinstance(border, Ray):
x, y = border.cut(field_size).split_xy()
else:
x, y = border.split_xy()
plt.plot(x, y, colour, linewidth=linewidth)
progress = i * 100 // n
if progress % 5 == 0 and (i - 1) * 100 // n < progress:
print(f'{progress}% of the image is ready')
plt.title('Set $B_{'+str(self.iteration)+'}$')
plt.show()
def main():
print('Enter coordinates of your polygon clockwise in the format x1 y1 x2 y2 ...')
print('For example: 0 0 -1/2 1 1/2 3/2 3/2 1 1 0')
print('Another example: 3 1 3 -1 1 -3 -1 -3 -3 -1 -3 1 -1 3 1 3')
print('Or if your polygon is a trapezium, enter only its base ratio')
print('For example: 4/7')
polygon = None
while polygon is None:
inp = input('Your input: ').split()
if len(inp) == 1: # трапеция
polygon = Polygon([FracVec2(1, 0), FracVec2(0, 0),
FracVec2(0, 1), FracVec2(Frac(inp[0]), 1)])
elif inp and len(inp) % 2 == 0:
polygon = Polygon([FracVec2(Frac(inp[i*2]), Frac(inp[i*2+1]))
for i in range(len(inp)//2)])
max_iteration = int(input('Max iteration: '))
field = Field(polygon)
field.find_borders(max_iteration)
field.show()
main()