-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtaskruntime2.h
278 lines (215 loc) · 8.49 KB
/
taskruntime2.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#pragma once
#include <sys/types.h>
#include <sys/event.h>
#include <unistd.h>
#include "./../src/silk_pool.h"
namespace silk {
namespace demo_runtime_2 {
class task;
struct uwcontext : public silk::wcontext {
bool is_recyclable;
task* continuation_task;
task* current_executable_task;
};
silk::wcontext* makeuwcontext() {
uwcontext* c = new uwcontext();
silk::init_wcontext(c);
c->current_executable_task = c->continuation_task = nullptr;
return c;
}
inline uwcontext* fetch_current_uwcontext() {
return (uwcontext*)silk::wcontexts[silk::current_worker_id];
}
class cancellation_token {
std::atomic<bool> is_cancelled_ = false;
public:
bool is_cancelled(const std::memory_order memory_order = std::memory_order_acquire) const {
return is_cancelled_.load(memory_order);
}
void cancel(const std::memory_order memory_order = std::memory_order_release) {
is_cancelled_.store(true, memory_order);
}
};
class allocate_continuation_proxy {
public:
task& allocate(size_t size) const;
};
class allocate_child_proxy {
public:
task& allocate(size_t size) const;
};
class task : public silk::task {
task* continuation_;
std::atomic<int> ref_count_ = 0;
cancellation_token* cancellation_token_ = nullptr;
public:
task() {
auto c = fetch_current_uwcontext();
continuation_ = c->continuation_task ? c->continuation_task : nullptr;
c->continuation_task = nullptr;
}
virtual ~task() {
}
allocate_continuation_proxy& allocate_continuation() {
return *reinterpret_cast<allocate_continuation_proxy*>(this);
}
allocate_child_proxy& allocate_child() {
return *reinterpret_cast<allocate_child_proxy*>(this);
}
void *operator new(const size_t bytes) {
return ::operator new(bytes);
}
void *operator new(const size_t bytes, const allocate_continuation_proxy& p) {
return &p.allocate(bytes);
}
void *operator new(const size_t bytes, const allocate_child_proxy& p) {
return &p.allocate(bytes);
}
virtual task* execute() = 0;
task* continuation() const {
return continuation_;
}
void set_continuation(task& t) {
continuation_ = &t;
}
void reset_continuation() {
continuation_ = nullptr;
}
void set_ref_count(const int count, const std::memory_order memory_order = std::memory_order_release) {
ref_count_.store(count, memory_order);
}
int ref_count(const std::memory_order memory_order = std::memory_order_acquire) const {
return ref_count_.load(memory_order);
}
int decrement_ref_count(const std::memory_order memory_order = std::memory_order_acquire) {
return ref_count_.fetch_sub(1, memory_order) - 1;
}
int increment_ref_count(const std::memory_order memory_order = std::memory_order_acquire) {
return ref_count_.fetch_add(1, memory_order) + 1;
}
bool is_canceled(const std::memory_order memory_order = std::memory_order_acquire) const {
return !cancellation_token_ ? false : cancellation_token_->is_cancelled(memory_order);
}
void cancel(const std::memory_order memory_order = std::memory_order_release) const {
if (cancellation_token_) {
cancellation_token_->cancel(memory_order);
}
}
void set_cancellation_token(cancellation_token* token) {
cancellation_token_ = token;
}
cancellation_token* cancellation_token() const {
return cancellation_token_;
}
static task* self() {
return fetch_current_uwcontext()->current_executable_task;
};
protected:
static void recycle() {
fetch_current_uwcontext()->is_recyclable = true;
}
void recycle_as_child_of(task& t) {
continuation_ = &t;
recycle();
}
};
inline task& allocate_continuation_proxy::allocate(const size_t size) const {
task& t = *((task*)this);
fetch_current_uwcontext()->continuation_task = t.continuation();
t.reset_continuation();
return *((task*)::operator new(size));
}
inline task& allocate_child_proxy::allocate(const size_t size) const {
task& t = *((task*)this);
fetch_current_uwcontext()->continuation_task = &t;
return *((task*)::operator new(size));
}
void schedule(silk::task* v) {
uwcontext* cx = fetch_current_uwcontext();
task* t = (task*)v;
task* c = nullptr;
do {
if (!t->is_canceled()) {
cx->current_executable_task = t;
cx->is_recyclable = false;
task* bypass = t->execute();
cx->current_executable_task = nullptr;
if (!cx->is_recyclable && t->ref_count() == 0) {
if (t->continuation()) {
c = t->continuation();
}
delete t;
} else if (!bypass) {
break;
}
if (bypass) {
t = bypass;
continue;
}
} else {
c = t->continuation();
delete t;
}
t = c && c->decrement_ref_count() <= 0 ? c : nullptr;
c = nullptr;
} while (t);
}
inline void spawn(task& t) {
silk::spawn(silk::current_worker_id, (task*)&t);
}
int kq;
typedef void(*readed_callback)(const int socket, char* buf, const int nbytes);
class io_read_continuation : public task {
readed_callback callback_;
int read_sequence_count_;
int nbytes_;
int socket_;
char* buf_;
public:
io_read_continuation(readed_callback callbak) : callback_(callbak) {
}
void set_read_result(const int socket, char* buf, const int nbytes) {
buf_ = buf;
nbytes_ = nbytes;
socket_ = socket;
read_sequence_count_++;
}
int read_sequence_count() {
return read_sequence_count_;
}
task* execute() {
int read_sequence_count = read_sequence_count_;
callback_( socket_, buf_, nbytes_ );
if (read_sequence_count != read_sequence_count_) {
recycle();
return this;
}
return nullptr;
}
};
struct io_read_frame {
io_read_continuation* continuation;
int nbytes;
char* buf;
};
void read_async(const int socket, char* buf, const int nbytes, const readed_callback callback) {
uwcontext* c = fetch_current_uwcontext();
io_read_continuation* t = dynamic_cast<io_read_continuation*>(c->current_executable_task);
if (t && t->read_sequence_count() < 32) {
memset(buf, 0, nbytes);
int n = read(socket, buf, nbytes); //NON-BLOCKING MODE...
if (n >= 0 || (n == -1 && errno != EAGAIN)) {
t->set_read_result(socket, buf, n);
return;
}
}
io_read_frame* frame = new io_read_frame();
frame->continuation = new io_read_continuation(callback);
frame->nbytes = nbytes;
frame->buf = buf;
struct kevent evSet;
EV_SET(&evSet, socket, EVFILT_READ, EV_ADD | EV_ONESHOT, 0, 0, frame);
assert(-1 != kevent(kq, & evSet, 1, NULL, 0, NULL));
}
}
}