-
Notifications
You must be signed in to change notification settings - Fork 0
/
lab2_apache_log_student-042016.py
740 lines (501 loc) · 38.8 KB
/
lab2_apache_log_student-042016.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# coding: utf-8
# version 1.0.0
# #![Spark Logo](http://spark-mooc.github.io/web-assets/images/ta_Spark-logo-small.png) + ![Python Logo](http://spark-mooc.github.io/web-assets/images/python-logo-master-v3-TM-flattened_small.png)
# # **Web Server Log Analysis with Apache Spark**
#
# ####This lab will demonstrate how easy it is to perform web server log analysis with Apache Spark.
#
# ####Server log analysis is an ideal use case for Spark. It's a very large, common data source and contains a rich set of information. Spark allows you to store your logs in files on disk cheaply, while still providing a quick and simple way to perform data analysis on them. This homework will show you how to use Apache Spark on real-world text-based production logs and fully harness the power of that data. Log data comes from many sources, such as web, file, and compute servers, application logs, user-generated content, and can be used for monitoring servers, improving business and customer intelligence, building recommendation systems, fraud detection, and much more.
# ### How to complete this assignment
#
# ####This assignment is broken up into sections with bite-sized examples for demonstrating Spark functionality for log processing. For each problem, you should start by thinking about the algorithm that you will use to *efficiently* process the log in a parallel, distributed manner. This means using the various [RDD](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD) operations along with [`lambda` functions](https://docs.python.org/2/tutorial/controlflow.html#lambda-expressions) that are applied at each worker.
#
# ####This assignment consists of 4 parts:
# #### *Part 1*: Apache Web Server Log file format
# #### *Part 2*: Sample Analyses on the Web Server Log File
# #### *Part 3*: Analyzing Web Server Log File
# #### *Part 4*: Exploring 404 Response Codes
# ### **Part 1: Apache Web Server Log file format**
# ####The log files that we use for this assignment are in the [Apache Common Log Format (CLF)](http://httpd.apache.org/docs/1.3/logs.html#common). The log file entries produced in CLF will look something like this:
# `127.0.0.1 - - [01/Aug/1995:00:00:01 -0400] "GET /images/launch-logo.gif HTTP/1.0" 200 1839`
#
# ####Each part of this log entry is described below.
# * `127.0.0.1`
# ####This is the IP address (or host name, if available) of the client (remote host) which made the request to the server.
#
# * `-`
# ####The "hyphen" in the output indicates that the requested piece of information (user identity from remote machine) is not available.
#
# * `-`
# ####The "hyphen" in the output indicates that the requested piece of information (user identity from local logon) is not available.
#
# * `[01/Aug/1995:00:00:01 -0400]`
# ####The time that the server finished processing the request. The format is:
# `[day/month/year:hour:minute:second timezone]`
# * ####day = 2 digits
# * ####month = 3 letters
# * ####year = 4 digits
# * ####hour = 2 digits
# * ####minute = 2 digits
# * ####second = 2 digits
# * ####zone = (\+ | \-) 4 digits
#
# * `"GET /images/launch-logo.gif HTTP/1.0"`
# ####This is the first line of the request string from the client. It consists of a three components: the request method (e.g., `GET`, `POST`, etc.), the endpoint (a [Uniform Resource Identifier](http://en.wikipedia.org/wiki/Uniform_resource_identifier)), and the client protocol version.
#
# * `200`
# ####This is the status code that the server sends back to the client. This information is very valuable, because it reveals whether the request resulted in a successful response (codes beginning in 2), a redirection (codes beginning in 3), an error caused by the client (codes beginning in 4), or an error in the server (codes beginning in 5). The full list of possible status codes can be found in the HTTP specification ([RFC 2616](https://www.ietf.org/rfc/rfc2616.txt) section 10).
#
# * `1839`
# ####The last entry indicates the size of the object returned to the client, not including the response headers. If no content was returned to the client, this value will be "-" (or sometimes 0).
#
# ####Note that log files contain information supplied directly by the client, without escaping. Therefore, it is possible for malicious clients to insert control-characters in the log files, *so care must be taken in dealing with raw logs.*
#
# ### NASA-HTTP Web Server Log
# ####For this assignment, we will use a data set from NASA Kennedy Space Center WWW server in Florida. The full data set is freely available (http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html) and contains two month's of all HTTP requests. We are using a subset that only contains several days worth of requests.
# ### **(1a) Parsing Each Log Line**
# ####Using the CLF as defined above, we create a regular expression pattern to extract the nine fields of the log line using the Python regular expression [`search` function](https://docs.python.org/2/library/re.html#regular-expression-objects). The function returns a pair consisting of a Row object and 1. If the log line fails to match the regular expression, the function returns a pair consisting of the log line string and 0. A '-' value in the content size field is cleaned up by substituting it with 0. The function converts the log line's date string into a Python `datetime` object using the given `parse_apache_time` function.
# In[1]:
import re
import datetime
from pyspark.sql import Row
month_map = {'Jan': 1, 'Feb': 2, 'Mar':3, 'Apr':4, 'May':5, 'Jun':6, 'Jul':7,
'Aug':8, 'Sep': 9, 'Oct':10, 'Nov': 11, 'Dec': 12}
def parse_apache_time(s):
""" Convert Apache time format into a Python datetime object
Args:
s (str): date and time in Apache time format
Returns:
datetime: datetime object (ignore timezone for now)
"""
return datetime.datetime(int(s[7:11]),
month_map[s[3:6]],
int(s[0:2]),
int(s[12:14]),
int(s[15:17]),
int(s[18:20]))
def parseApacheLogLine(logline):
""" Parse a line in the Apache Common Log format
Args:
logline (str): a line of text in the Apache Common Log format
Returns:
tuple: either a dictionary containing the parts of the Apache Access Log and 1,
or the original invalid log line and 0
"""
match = re.search(APACHE_ACCESS_LOG_PATTERN, logline)
if match is None:
return (logline, 0)
size_field = match.group(9)
if size_field == '-':
size = long(0)
else:
size = long(match.group(9))
return (Row(
host = match.group(1),
client_identd = match.group(2),
user_id = match.group(3),
date_time = parse_apache_time(match.group(4)),
method = match.group(5),
endpoint = match.group(6),
protocol = match.group(7),
response_code = int(match.group(8)),
content_size = size
), 1)
# In[3]:
# A regular expression pattern to extract fields from the log line
APACHE_ACCESS_LOG_PATTERN = '^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+) (\S+)\s*(\S*)" (\d{3}) (\S+)'
# ### **(1b) Configuration and Initial RDD Creation**
# ####We are ready to specify the input log file and create an RDD containing the parsed log file data. The log file has already been downloaded for you.
#
# ####To create the primary RDD that we'll use in the rest of this assignment, we first load the text file using [`sc.textfile(logFile)`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.SparkContext.textFile) to convert each line of the file into an element in an RDD.
# ####Next, we use [`map(parseApacheLogLine)`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.map) to apply the parse function to each element (that is, a line from the log file) in the RDD and turn each line into a pair [`Row` object](http://spark.apache.org/docs/latest/api/python/pyspark.sql.html#pyspark.sql.Row).
# ####Finally, we cache the RDD in memory since we'll use it throughout this notebook.
# In[2]:
import sys
import os
from test_helper import Test
baseDir = os.path.join('data')
inputPath = os.path.join('cs100', 'lab2', 'apache.access.log.PROJECT')
logFile = os.path.join(baseDir, inputPath)
def parseLogs():
""" Read and parse log file """
parsed_logs = (sc
.textFile(logFile)
.map(parseApacheLogLine)
.cache())
access_logs = (parsed_logs
.filter(lambda s: s[1] == 1)
.map(lambda s: s[0])
.cache())
failed_logs = (parsed_logs
.filter(lambda s: s[1] == 0)
.map(lambda s: s[0]))
failed_logs_count = failed_logs.count()
if failed_logs_count > 0:
print 'Number of invalid logline: %d' % failed_logs.count()
for line in failed_logs.take(20):
print 'Invalid logline: %s' % line
print 'Read %d lines, successfully parsed %d lines, failed to parse %d lines' % (parsed_logs.count(), access_logs.count(), failed_logs.count())
return parsed_logs, access_logs, failed_logs
parsed_logs, access_logs, failed_logs = parseLogs()
# ### **(1c) Data Cleaning**
# #### Notice that there are a large number of log lines that failed to parse. Examine the sample of invalid lines and compare them to the correctly parsed line, an example is included below. Based on your observations, alter the `APACHE_ACCESS_LOG_PATTERN` regular expression below so that the failed lines will correctly parse, and press `Shift-Enter` to rerun `parseLogs()`.
#
# `127.0.0.1 - - [01/Aug/1995:00:00:01 -0400] "GET /images/launch-logo.gif HTTP/1.0" 200 1839`
#
# #### If you not familar with Python regular expression [`search` function](https://docs.python.org/2/library/re.html#regular-expression-objects), now would be a good time to check up on the [documentation](https://developers.google.com/edu/python/regular-expressions). One tip that might be useful is to use an online tester like http://pythex.org or http://www.pythonregex.com. To use it, copy and paste the regular expression string below (located between the single quotes ') and test it against one of the 'Invalid logline' above.
# In[3]:
# TODO: Replace <FILL IN> with appropriate code
# This was originally '^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+) (\S+)\s*(\S*)" (\d{3}) (\S+)'
APACHE_ACCESS_LOG_PATTERN = '^(\S+) (\S+) (\S+) \[([\w:/]+\s[+\-]\d{4})\] "(\S+) (\S+)\s*(\S*)?\s*" (\d{3}) (\S+)'
parsed_logs, access_logs, failed_logs = parseLogs()
# In[6]:
# TEST Data cleaning (1c)
Test.assertEquals(failed_logs.count(), 0, 'incorrect failed_logs.count()')
Test.assertEquals(parsed_logs.count(), 1043177 , 'incorrect parsed_logs.count()')
Test.assertEquals(access_logs.count(), parsed_logs.count(), 'incorrect access_logs.count()')
# ### **Part 2: Sample Analyses on the Web Server Log File**
#
# ####Now that we have an RDD containing the log file as a set of Row objects, we can perform various analyses.
#
# #### **(2a) Example: Content Size Statistics**
#
# ####Let's compute some statistics about the sizes of content being returned by the web server. In particular, we'd like to know what are the average, minimum, and maximum content sizes.
#
# ####We can compute the statistics by applying a `map` to the `access_logs` RDD. The `lambda` function we want for the map is to extract the `content_size` field from the RDD. The map produces a new RDD containing only the `content_sizes` (one element for each Row object in the `access_logs` RDD). To compute the minimum and maximum statistics, we can use [`min()`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.min) and [`max()`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.max) functions on the new RDD. We can compute the average statistic by using the [`reduce`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.reduce) function with a `lambda` function that sums the two inputs, which represent two elements from the new RDD that are being reduced together. The result of the `reduce()` is the total content size from the log and it is to be divided by the number of requests as determined using the [`count()`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.count) function on the new RDD.
# In[7]:
# Calculate statistics based on the content size.
content_sizes = access_logs.map(lambda log: log.content_size).cache()
print 'Content Size Avg: %i, Min: %i, Max: %s' % (
content_sizes.reduce(lambda a, b : a + b) / content_sizes.count(),
content_sizes.min(),
content_sizes.max())
# #### **(2b) Example: Response Code Analysis**
# ####Next, lets look at the response codes that appear in the log. As with the content size analysis, first we create a new RDD by using a `lambda` function to extract the `response_code` field from the `access_logs` RDD. The difference here is that we will use a [pair tuple](https://docs.python.org/2/tutorial/datastructures.html?highlight=tuple#tuples-and-sequences) instead of just the field itself. Using a pair tuple consisting of the response code and 1 will let us count how many records have a particular response code. Using the new RDD, we perform a [`reduceByKey`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.reduceByKey) function. `reduceByKey` performs a reduce on a per-key basis by applying the `lambda` function to each element, pairwise with the same key. We use the simple `lambda` function of adding the two values. Then, we cache the resulting RDD and create a list by using the [`take`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.take) function.
# In[8]:
# Response Code to Count
responseCodeToCount = (access_logs
.map(lambda log: (log.response_code, 1))
.reduceByKey(lambda a, b : a + b)
.cache())
responseCodeToCountList = responseCodeToCount.take(100)
print 'Found %d response codes' % len(responseCodeToCountList)
print 'Response Code Counts: %s' % responseCodeToCountList
assert len(responseCodeToCountList) == 7
assert sorted(responseCodeToCountList) == [(200, 940847), (302, 16244), (304, 79824), (403, 58), (404, 6185), (500, 2), (501, 17)]
# #### **(2c) Example: Response Code Graphing with `matplotlib`**
# ####Now, lets visualize the results from the last example. We can visualize the results from the last example using [`matplotlib`](http://matplotlib.org/). First we need to extract the labels and fractions for the graph. We do this with two separate `map` functions with a `lambda` functions. The first `map` function extracts a list of of the response code values, and the second `map` function extracts a list of the per response code counts divided by the total size of the access logs. Next, we create a figure with `figure()` constructor and use the `pie()` method to create the pie plot.
# In[9]:
labels = responseCodeToCount.map(lambda (x, y): x).collect()
print labels
count = access_logs.count()
fracs = responseCodeToCount.map(lambda (x, y): (float(y) / count)).collect()
print fracs
# In[10]:
import matplotlib.pyplot as plt
def pie_pct_format(value):
""" Determine the appropriate format string for the pie chart percentage label
Args:
value: value of the pie slice
Returns:
str: formated string label; if the slice is too small to fit, returns an empty string for label
"""
return '' if value < 7 else '%.0f%%' % value
fig = plt.figure(figsize=(4.5, 4.5), facecolor='white', edgecolor='white')
colors = ['yellowgreen', 'lightskyblue', 'gold', 'purple', 'lightcoral', 'yellow', 'black']
explode = (0.05, 0.05, 0.1, 0, 0, 0, 0)
patches, texts, autotexts = plt.pie(fracs, labels=labels, colors=colors,
explode=explode, autopct=pie_pct_format,
shadow=False, startangle=125)
for text, autotext in zip(texts, autotexts):
if autotext.get_text() == '':
text.set_text('') # If the slice is small to fit, don't show a text label
plt.legend(labels, loc=(0.80, -0.1), shadow=True)
pass
# #### **(2d) Example: Frequent Hosts**
# ####Let's look at hosts that have accessed the server multiple times (e.g., more than ten times). As with the response code analysis in (2b), first we create a new RDD by using a `lambda` function to extract the `host` field from the `access_logs` RDD using a pair tuple consisting of the host and 1 which will let us count how many records were created by a particular host's request. Using the new RDD, we perform a `reduceByKey` function with a `lambda` function that adds the two values. We then filter the result based on the count of accesses by each host (the second element of each pair) being greater than ten. Next, we extract the host name by performing a `map` with a `lambda` function that returns the first element of each pair. Finally, we extract 20 elements from the resulting RDD - *note that the choice of which elements are returned is not guaranteed to be deterministic.*
# In[11]:
# Any hosts that has accessed the server more than 10 times.
hostCountPairTuple = access_logs.map(lambda log: (log.host, 1))
hostSum = hostCountPairTuple.reduceByKey(lambda a, b : a + b)
hostMoreThan10 = hostSum.filter(lambda s: s[1] > 10)
hostsPick20 = (hostMoreThan10
.map(lambda s: s[0])
.take(20))
print 'Any 20 hosts that have accessed more then 10 times: %s' % hostsPick20
# An example: [u'204.120.34.185', u'204.243.249.9', u'slip1-32.acs.ohio-state.edu', u'lapdog-14.baylor.edu', u'199.77.67.3', u'gs1.cs.ttu.edu', u'haskell.limbex.com', u'alfred.uib.no', u'146.129.66.31', u'manaus.bologna.maraut.it', u'dialup98-110.swipnet.se', u'slip-ppp02.feldspar.com', u'ad03-053.compuserve.com', u'srawlin.opsys.nwa.com', u'199.202.200.52', u'ix-den7-23.ix.netcom.com', u'151.99.247.114', u'w20-575-104.mit.edu', u'205.25.227.20', u'ns.rmc.com']
# #### **(2e) Example: Visualizing Endpoints**
# ####Now, lets visualize the number of hits to endpoints (URIs) in the log. To perform this task, we first create a new RDD by using a `lambda` function to extract the `endpoint` field from the `access_logs` RDD using a pair tuple consisting of the endpoint and 1 which will let us count how many records were created by a particular host's request. Using the new RDD, we perform a `reduceByKey` function with a `lambda` function that adds the two values. We then cache the results.
#
# ####Next we visualize the results using `matplotlib`. We previously imported the `matplotlib.pyplot` library, so we do not need to import it again. We perform two separate `map` functions with `lambda` functions. The first `map` function extracts a list of endpoint values, and the second `map` function extracts a list of the visits per endpoint values. Next, we create a figure with `figure()` constructor, set various features of the plot (axis limits, grid lines, and labels), and use the `plot()` method to create the line plot.
# In[12]:
endpoints = (access_logs
.map(lambda log: (log.endpoint, 1))
.reduceByKey(lambda a, b : a + b)
.cache())
ends = endpoints.map(lambda (x, y): x).collect()
counts = endpoints.map(lambda (x, y): y).collect()
fig = plt.figure(figsize=(8,4.2), facecolor='white', edgecolor='white')
plt.axis([0, len(ends), 0, max(counts)])
plt.grid(b=True, which='major', axis='y')
plt.xlabel('Endpoints')
plt.ylabel('Number of Hits')
plt.plot(counts)
pass
# #### **(2f) Example: Top Endpoints**
# ####For the final example, we'll look at the top endpoints (URIs) in the log. To determine them, we first create a new RDD by using a `lambda` function to extract the `endpoint` field from the `access_logs` RDD using a pair tuple consisting of the endpoint and 1 which will let us count how many records were created by a particular host's request. Using the new RDD, we perform a `reduceByKey` function with a `lambda` function that adds the two values. We then extract the top ten endpoints by performing a [`takeOrdered`](http://spark.apache.org/docs/latest/api/python/pyspark.html#pyspark.RDD.takeOrdered) with a value of 10 and a `lambda` function that multiplies the count (the second element of each pair) by -1 to create a sorted list with the top endpoints at the bottom.
# In[13]:
# Top Endpoints
endpointCounts = (access_logs
.map(lambda log: (log.endpoint, 1))
.reduceByKey(lambda a, b : a + b))
topEndpoints = endpointCounts.takeOrdered(10, lambda s: -1 * s[1])
print 'Top Ten Endpoints: %s' % topEndpoints
assert topEndpoints == [(u'/images/NASA-logosmall.gif', 59737), (u'/images/KSC-logosmall.gif', 50452), (u'/images/MOSAIC-logosmall.gif', 43890), (u'/images/USA-logosmall.gif', 43664), (u'/images/WORLD-logosmall.gif', 43277), (u'/images/ksclogo-medium.gif', 41336), (u'/ksc.html', 28582), (u'/history/apollo/images/apollo-logo1.gif', 26778), (u'/images/launch-logo.gif', 24755), (u'/', 20292)], 'incorrect Top Ten Endpoints'
# ### **Part 3: Analyzing Web Server Log File**
#
# ####Now it is your turn to perform analyses on web server log files.
# #### **(3a) Exercise: Top Ten Error Endpoints**
# ####What are the top ten endpoints which did not have return code 200? Create a sorted list containing top ten endpoints and the number of times that they were accessed with non-200 return code.
#
# ####Think about the steps that you need to perform to determine which endpoints did not have a 200 return code, how you will uniquely count those endpoints, and sort the list.
#
# ####You might want to refer back to the previous Lab (Lab 1 Word Count) for insights.
# In[47]:
# TODO: Replace <FILL IN> with appropriate code
# HINT: Each of these <FILL IN> below could be completed with a single transformation or action.
# You are welcome to structure your solution in a different way, so long as
# you ensure the variables used in the next Test section are defined (ie. endpointSum, topTenErrURLs).
not200 = access_logs.filter(lambda log: log.response_code != 200)
endpointCountPairTuple = not200.map(lambda log: (log.endpoint, 1))
endpointSum = endpointCountPairTuple.reduceByKey(lambda a,b : a + b)
topTenErrURLs = endpointSum.takeOrdered(10, lambda s: -1 * s[1])
print 'Top Ten failed URLs: %s' % topTenErrURLs
# In[48]:
# TEST Top ten error endpoints (3a)
Test.assertEquals(endpointSum.count(), 7689, 'incorrect count for endpointSum')
Test.assertEquals(topTenErrURLs, [(u'/images/NASA-logosmall.gif', 8761), (u'/images/KSC-logosmall.gif', 7236), (u'/images/MOSAIC-logosmall.gif', 5197), (u'/images/USA-logosmall.gif', 5157), (u'/images/WORLD-logosmall.gif', 5020), (u'/images/ksclogo-medium.gif', 4728), (u'/history/apollo/images/apollo-logo1.gif', 2907), (u'/images/launch-logo.gif', 2811), (u'/', 2199), (u'/images/ksclogosmall.gif', 1622)], 'incorrect Top Ten failed URLs (topTenErrURLs)')
# #### **(3b) Exercise: Number of Unique Hosts**
# ####How many unique hosts are there in the entire log?
#
# ####Think about the steps that you need to perform to count the number of different hosts in the log.
# In[57]:
# TODO: Replace <FILL IN> with appropriate code
# HINT: Do you recall the tips from (3a)? Each of these <FILL IN> could be an transformation or action.
hosts = access_logs.map(lambda log: (log.host, 1))
uniqueHosts = hosts.reduceByKey(lambda x, y: x + y)
uniqueHostCount = uniqueHosts.count()
print 'Unique hosts: %d' % uniqueHostCount
# In[58]:
# TEST Number of unique hosts (3b)
Test.assertEquals(uniqueHostCount, 54507, 'incorrect uniqueHostCount')
# #### **(3c) Exercise: Number of Unique Daily Hosts**
# ####For an advanced exercise, let's determine the number of unique hosts in the entire log on a day-by-day basis. This computation will give us counts of the number of unique daily hosts. We'd like a list sorted by increasing day of the month which includes the day of the month and the associated number of unique hosts for that day. Make sure you cache the resulting RDD `dailyHosts` so that we can reuse it in the next exercise.
#
# ####Think about the steps that you need to perform to count the number of different hosts that make requests *each* day.
# ####*Since the log only covers a single month, you can ignore the month.*
# In[29]:
# TODO: Replace <FILL IN> with appropriate code
dayToHostPairTuple = access_logs.map(lambda log: (log.date_time.day, log.host))
dayGroupedHosts = dayToHostPairTuple.groupByKey()
dayHostCount = dayGroupedHosts.map(lambda (x,y): (x, len(list(set(y)))))
dailyHosts = (dayHostCount
.sortByKey()
.cache())
dailyHostsList = dailyHosts.take(30)
print 'Unique hosts per day: %s' % dailyHostsList
# In[30]:
# TEST Number of unique daily hosts (3c)
Test.assertEquals(dailyHosts.count(), 21, 'incorrect dailyHosts.count()')
Test.assertEquals(dailyHostsList, [(1, 2582), (3, 3222), (4, 4190), (5, 2502), (6, 2537), (7, 4106), (8, 4406), (9, 4317), (10, 4523), (11, 4346), (12, 2864), (13, 2650), (14, 4454), (15, 4214), (16, 4340), (17, 4385), (18, 4168), (19, 2550), (20, 2560), (21, 4134), (22, 4456)], 'incorrect dailyHostsList')
Test.assertTrue(dailyHosts.is_cached, 'incorrect dailyHosts.is_cached')
# #### **(3d) Exercise: Visualizing the Number of Unique Daily Hosts**
# ####Using the results from the previous exercise, use `matplotlib` to plot a "Line" graph of the unique hosts requests by day.
# #### `daysWithHosts` should be a list of days and `hosts` should be a list of number of unique hosts for each corresponding day.
# #### * How could you convert a RDD into a list? See the [`collect()` method](http://spark.apache.org/docs/latest/api/python/pyspark.html?highlight=collect#pyspark.RDD.collect)*
# In[31]:
# TODO: Replace <FILL IN> with appropriate code
daysWithHosts = dailyHosts.map(lambda (x,y): x).collect()
hosts = dailyHosts.map(lambda (x,y): y).collect()
# In[32]:
# TEST Visualizing unique daily hosts (3d)
test_days = range(1, 23)
test_days.remove(2)
Test.assertEquals(daysWithHosts, test_days, 'incorrect days')
Test.assertEquals(hosts, [2582, 3222, 4190, 2502, 2537, 4106, 4406, 4317, 4523, 4346, 2864, 2650, 4454, 4214, 4340, 4385, 4168, 2550, 2560, 4134, 4456], 'incorrect hosts')
# In[33]:
fig = plt.figure(figsize=(8,4.5), facecolor='white', edgecolor='white')
plt.axis([min(daysWithHosts), max(daysWithHosts), 0, max(hosts)+500])
plt.grid(b=True, which='major', axis='y')
plt.xlabel('Day')
plt.ylabel('Hosts')
plt.plot(daysWithHosts, hosts)
pass
# #### **(3e) Exercise: Average Number of Daily Requests per Hosts**
# ####Next, let's determine the average number of requests on a day-by-day basis. We'd like a list by increasing day of the month and the associated average number of requests per host for that day. Make sure you cache the resulting RDD `avgDailyReqPerHost` so that we can reuse it in the next exercise.
# ####To compute the average number of requests per host, get the total number of request across all hosts and divide that by the number of unique hosts.
# ####*Since the log only covers a single month, you can skip checking for the month.*
# ####*Also to keep it simple, when calculating the approximate average use the integer value - you do not need to upcast to float*
# In[22]:
# TODO: Replace <FILL IN> with appropriate code
dayAndHostTuple = access_logs.map(lambda log: (log.date_time.day, log.host))
groupedByDay = dayAndHostTuple.groupByKey()
sortedByDay = groupedByDay.sortByKey()
avgDailyReqPerHost = (sortedByDay
.map(lambda (x,y): (x, len(y) / len(list(set(y)))))
.cache())
avgDailyReqPerHostList = avgDailyReqPerHost.take(30)
print 'Average number of daily requests per Hosts is %s' % avgDailyReqPerHostList
# In[23]:
# TEST Average number of daily requests per hosts (3e)
Test.assertEquals(avgDailyReqPerHostList, [(1, 13), (3, 12), (4, 14), (5, 12), (6, 12), (7, 13), (8, 13), (9, 14), (10, 13), (11, 14), (12, 13), (13, 13), (14, 13), (15, 13), (16, 13), (17, 13), (18, 13), (19, 12), (20, 12), (21, 13), (22, 12)], 'incorrect avgDailyReqPerHostList')
Test.assertTrue(avgDailyReqPerHost.is_cached, 'incorrect avgDailyReqPerHost.is_cache')
# #### **(3f) Exercise: Visualizing the Average Daily Requests per Unique Host**
# ####Using the result `avgDailyReqPerHost` from the previous exercise, use `matplotlib` to plot a "Line" graph of the average daily requests per unique host by day.
# #### `daysWithAvg` should be a list of days and `avgs` should be a list of average daily requests per unique hosts for each corresponding day.
# In[24]:
# TODO: Replace <FILL IN> with appropriate code
daysWithAvg = avgDailyReqPerHost.map(lambda (x, y): x).collect()
avgs = avgDailyReqPerHost.map(lambda (x, y): y).collect()
# In[25]:
# TEST Average Daily Requests per Unique Host (3f)
Test.assertEquals(daysWithAvg, [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], 'incorrect days')
Test.assertEquals(avgs, [13, 12, 14, 12, 12, 13, 13, 14, 13, 14, 13, 13, 13, 13, 13, 13, 13, 12, 12, 13, 12], 'incorrect avgs')
# In[34]:
fig = plt.figure(figsize=(8,4.2), facecolor='white', edgecolor='white')
plt.axis([0, max(daysWithAvg), 0, max(avgs)+2])
plt.grid(b=True, which='major', axis='y')
plt.xlabel('Day')
plt.ylabel('Average')
plt.plot(daysWithAvg, avgs)
pass
# ### **Part 4: Exploring 404 Response Codes**
#
# ####Let's drill down and explore the error 404 response code records. 404 errors are returned when an endpoint is not found by the server (i.e., a missing page or object).
# #### **(4a) Exercise: Counting 404 Response Codes**
# #### Create a RDD containing only log records with a 404 response code. Make sure you `cache()` the RDD `badRecords` as we will use it in the rest of this exercise.
#
# #### How many 404 records are in the log?
# In[4]:
# TODO: Replace <FILL IN> with appropriate code
badRecords = (access_logs
.filter(lambda log: log.response_code == 404)
.cache())
print 'Found %d 404 URLs' % badRecords.count()
# In[5]:
# TEST Counting 404 (4a)
Test.assertEquals(badRecords.count(), 6185, 'incorrect badRecords.count()')
Test.assertTrue(badRecords.is_cached, 'incorrect badRecords.is_cached')
# #### **(4b) Exercise: Listing 404 Response Code Records**
# ####Using the RDD containing only log records with a 404 response code that you cached in part (4a), print out a list up to 40 **distinct** endpoints that generate 404 errors - *no endpoint should appear more than once in your list.*
# In[6]:
# TODO: Replace <FILL IN> with appropriate code
badEndpoints = badRecords.map(lambda log: (log.endpoint, 1))
badUniqueEndpoints = badEndpoints.reduceByKey(lambda x,y : x+y)
badUniqueEndpointsPick40 = badUniqueEndpoints.take(40)
print '404 URLS: %s' % badUniqueEndpointsPick40
# In[7]:
# TEST Listing 404 records (4b)
badUniqueEndpointsSet40 = set(badUniqueEndpointsPick40)
Test.assertEquals(len(badUniqueEndpointsSet40), 40, 'badUniqueEndpointsPick40 not distinct')
# #### **(4c) Exercise: Listing the Top Twenty 404 Response Code Endpoints**
# ####Using the RDD containing only log records with a 404 response code that you cached in part (4a), print out a list of the top twenty endpoints that generate the most 404 errors.
# ####*Remember, top endpoints should be in sorted order*
# In[10]:
# TODO: Replace <FILL IN> with appropriate code
badEndpointsCountPairTuple = badRecords.map(lambda log: (log.endpoint, 1))
badEndpointsSum = badEndpointsCountPairTuple.reduceByKey(lambda x,y: x+y)
badEndpointsTop20 = badEndpointsSum.takeOrdered(20, lambda s: -1 * s[1])
print 'Top Twenty 404 URLs: %s' % badEndpointsTop20
# In[11]:
# TEST Top twenty 404 URLs (4c)
Test.assertEquals(badEndpointsTop20, [(u'/pub/winvn/readme.txt', 633), (u'/pub/winvn/release.txt', 494), (u'/shuttle/missions/STS-69/mission-STS-69.html', 431), (u'/images/nasa-logo.gif', 319), (u'/elv/DELTA/uncons.htm', 178), (u'/shuttle/missions/sts-68/ksc-upclose.gif', 156), (u'/history/apollo/sa-1/sa-1-patch-small.gif', 146), (u'/images/crawlerway-logo.gif', 120), (u'/://spacelink.msfc.nasa.gov', 117), (u'/history/apollo/pad-abort-test-1/pad-abort-test-1-patch-small.gif', 100), (u'/history/apollo/a-001/a-001-patch-small.gif', 97), (u'/images/Nasa-logo.gif', 85), (u'/shuttle/resources/orbiters/atlantis.gif', 64), (u'/history/apollo/images/little-joe.jpg', 62), (u'/images/lf-logo.gif', 59), (u'/shuttle/resources/orbiters/discovery.gif', 56), (u'/shuttle/resources/orbiters/challenger.gif', 54), (u'/robots.txt', 53), (u'/elv/new01.gif>', 43), (u'/history/apollo/pad-abort-test-2/pad-abort-test-2-patch-small.gif', 38)], 'incorrect badEndpointsTop20')
# #### **(4d) Exercise: Listing the Top Twenty-five 404 Response Code Hosts**
# ####Instead of looking at the endpoints that generated 404 errors, let's look at the hosts that encountered 404 errors. Using the RDD containing only log records with a 404 response code that you cached in part (4a), print out a list of the top twenty-five hosts that generate the most 404 errors.
# In[16]:
# TODO: Replace <FILL IN> with appropriate code
errHostsCountPairTuple = badRecords.map(lambda log: (log.host, 1))
errHostsSum = errHostsCountPairTuple.reduceByKey(lambda a,b: a+b)
errHostsTop25 = errHostsSum.takeOrdered(25, lambda s: -1 * s[1])
print 'Top 25 hosts that generated errors: %s' % errHostsTop25
# In[17]:
# TEST Top twenty-five 404 response code hosts (4d)
Test.assertEquals(len(errHostsTop25), 25, 'length of errHostsTop25 is not 25')
Test.assertEquals(len(set(errHostsTop25) - set([(u'maz3.maz.net', 39), (u'piweba3y.prodigy.com', 39), (u'gate.barr.com', 38), (u'm38-370-9.mit.edu', 37), (u'ts8-1.westwood.ts.ucla.edu', 37), (u'nexus.mlckew.edu.au', 37), (u'204.62.245.32', 33), (u'163.206.104.34', 27), (u'spica.sci.isas.ac.jp', 27), (u'www-d4.proxy.aol.com', 26), (u'www-c4.proxy.aol.com', 25), (u'203.13.168.24', 25), (u'203.13.168.17', 25), (u'internet-gw.watson.ibm.com', 24), (u'scooter.pa-x.dec.com', 23), (u'crl5.crl.com', 23), (u'piweba5y.prodigy.com', 23), (u'onramp2-9.onr.com', 22), (u'slip145-189.ut.nl.ibm.net', 22), (u'198.40.25.102.sap2.artic.edu', 21), (u'gn2.getnet.com', 20), (u'msp1-16.nas.mr.net', 20), (u'isou24.vilspa.esa.es', 19), (u'dial055.mbnet.mb.ca', 19), (u'tigger.nashscene.com', 19)])), 0, 'incorrect errHostsTop25')
# #### **(4e) Exercise: Listing 404 Response Codes per Day**
# ####Let's explore the 404 records temporally. Break down the 404 requests by day (`cache()` the RDD `errDateSorted`) and get the daily counts sorted by day as a list.
# ####*Since the log only covers a single month, you can ignore the month in your checks.*
# In[20]:
# TODO: Replace <FILL IN> with appropriate code
errDateCountPairTuple = badRecords.map(lambda log: (log.date_time.day, 1))
errDateSum = errDateCountPairTuple.reduceByKey(lambda a,b: a+b)
errDateSorted = (errDateSum
.sortByKey()
.cache())
errByDate = errDateSorted.collect()
print '404 Errors by day: %s' % errByDate
# In[21]:
# TEST 404 response codes per day (4e)
Test.assertEquals(errByDate, [(1, 243), (3, 303), (4, 346), (5, 234), (6, 372), (7, 532), (8, 381), (9, 279), (10, 314), (11, 263), (12, 195), (13, 216), (14, 287), (15, 326), (16, 258), (17, 269), (18, 255), (19, 207), (20, 312), (21, 305), (22, 288)], 'incorrect errByDate')
Test.assertTrue(errDateSorted.is_cached, 'incorrect errDateSorted.is_cached')
# #### **(4f) Exercise: Visualizing the 404 Response Codes by Day**
# ####Using the results from the previous exercise, use `matplotlib` to plot a "Line" or "Bar" graph of the 404 response codes by day.
# In[22]:
# TODO: Replace <FILL IN> with appropriate code
daysWithErrors404 = errDateSorted.map(lambda (x,y): x).collect()
errors404ByDay = errDateSorted.map(lambda (x,y): y).collect()
# In[23]:
# TEST Visualizing the 404 Response Codes by Day (4f)
Test.assertEquals(daysWithErrors404, [1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22], 'incorrect daysWithErrors404')
Test.assertEquals(errors404ByDay, [243, 303, 346, 234, 372, 532, 381, 279, 314, 263, 195, 216, 287, 326, 258, 269, 255, 207, 312, 305, 288], 'incorrect errors404ByDay')
# In[25]:
fig = plt.figure(figsize=(8,4.2), facecolor='white', edgecolor='white')
plt.axis([0, max(daysWithErrors404), 0, max(errors404ByDay)])
plt.grid(b=True, which='major', axis='y')
plt.xlabel('Day')
plt.ylabel('404 Errors')
plt.plot(daysWithErrors404, errors404ByDay)
pass
# #### **(4g) Exercise: Top Five Days for 404 Response Codes **
# ####Using the RDD `errDateSorted` you cached in the part (4e), what are the top five days for 404 response codes and the corresponding counts of 404 response codes?
# In[26]:
# TODO: Replace <FILL IN> with appropriate code
topErrDate = errDateSorted.takeOrdered(5, lambda s: -1 * s[1])
print 'Top Five dates for 404 requests: %s' % topErrDate
# In[27]:
# TEST Five dates for 404 requests (4g)
Test.assertEquals(topErrDate, [(7, 532), (8, 381), (6, 372), (4, 346), (15, 326)], 'incorrect topErrDate')
# #### **(4h) Exercise: Hourly 404 Response Codes**
# ####Using the RDD `badRecords` you cached in the part (4a) and by hour of the day and in decreasing order, create an RDD containing how many requests had a 404 return code for each hour of the day. Cache the resulting RDD hourRecordsSorted and print that as a list.
# In[29]:
# TODO: Replace <FILL IN> with appropriate code
hourCountPairTuple = badRecords.map(lambda log: (log.date_time.hour, 1))
hourRecordsSum = hourCountPairTuple.reduceByKey(lambda a,b: a+b)
hourRecordsSorted = (hourRecordsSum
.sortByKey()
.cache())
errHourList = hourRecordsSorted.collect()
print 'Top hours for 404 requests: %s' % errHourList
# In[30]:
# TEST Hourly 404 response codes (4h)
Test.assertEquals(errHourList, [(0, 175), (1, 171), (2, 422), (3, 272), (4, 102), (5, 95), (6, 93), (7, 122), (8, 199), (9, 185), (10, 329), (11, 263), (12, 438), (13, 397), (14, 318), (15, 347), (16, 373), (17, 330), (18, 268), (19, 269), (20, 270), (21, 241), (22, 234), (23, 272)], 'incorrect errHourList')
Test.assertTrue(hourRecordsSorted.is_cached, 'incorrect hourRecordsSorted.is_cached')
# #### **(4i) Exercise: Visualizing the 404 Response Codes by Hour**
# ####Using the results from the previous exercise, use `matplotlib` to plot a "Line" or "Bar" graph of the 404 response codes by hour.
# In[31]:
# TODO: Replace <FILL IN> with appropriate code
hoursWithErrors404 = hourRecordsSorted.map(lambda (x,y): x).collect()
errors404ByHours = hourRecordsSorted.map(lambda (x,y): y).collect()
# In[32]:
# TEST Visualizing the 404 Response Codes by Hour (4i)
Test.assertEquals(hoursWithErrors404, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23], 'incorrect hoursWithErrors404')
Test.assertEquals(errors404ByHours, [175, 171, 422, 272, 102, 95, 93, 122, 199, 185, 329, 263, 438, 397, 318, 347, 373, 330, 268, 269, 270, 241, 234, 272], 'incorrect errors404ByHours')
# In[33]:
fig = plt.figure(figsize=(8,4.2), facecolor='white', edgecolor='white')
plt.axis([0, max(hoursWithErrors404), 0, max(errors404ByHours)])
plt.grid(b=True, which='major', axis='y')
plt.xlabel('Hour')
plt.ylabel('404 Errors')
plt.plot(hoursWithErrors404, errors404ByHours)
pass
# In[ ]: