-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathUKDALE_Parser.py
183 lines (146 loc) · 7.93 KB
/
UKDALE_Parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import pandas as pd
from pathlib import Path
from collections import defaultdict
from NILM_Dataset import *
from Pretrain_Dataset import *
class UK_Dale_Parser:
def __init__(self,args, stats = None):
self.data_location = args.ukdale_location
self.house_indicies = args.house_indicies
self.appliance_names = args.appliance_names
self.sampling = args.sampling
self.normalize = args.normalize
self.cutoff = [args.cutoff[appl] for appl in ['aggregate']+args.appliance_names]
self.threshold = [args.threshold[appl] for appl in args.appliance_names]
self.min_on = [args.min_on[appl] for appl in args.appliance_names]
self.min_off = [args.min_off[appl] for appl in args.appliance_names]
self.val_size = args.validation_size
self.window_size = args.window_size
self.window_stride = args.window_stride
self.x, self.y = self.load_data()
if self.normalize == 'mean':
if stats is None:
self.x_mean = np.mean(self.x)
self.x_std = np.std(self.x)
else:
self.x_mean,self.x_std = stats
self.x = (self.x - self.x_mean) / self.x_std
elif self.normalize == 'minmax':
if stats is None:
self.x_min = min(self.x)
self.x_max = max(self.x)
else:
self.x_min,self.x_max = stats
self.x = (self.x - self.x_min)/(self.x_max-self.x_min)
self.status = self.compute_status(self.y)
def load_data(self):
for appliance in self.appliance_names:
assert appliance in ['dishwasher', 'fridge','microwave', 'washing_machine', 'kettle','toaster']
for house_id in self.house_indicies:
assert house_id in [1, 2, 3, 4, 5]
directory = Path(self.data_location)
for house_id in self.house_indicies:
house_folder = directory.joinpath('house_' + str(house_id))
house_label = pd.read_csv(house_folder.joinpath('labels.dat'), sep=' ', header=None)
house_data = pd.read_csv(house_folder.joinpath('channel_1.dat'), sep=' ', header=None) #aggregate
#read aggregate data and resample
house_data.columns = ['time','aggregate']
house_data['time'] = pd.to_datetime(house_data['time'], unit = 's')
house_data = house_data.set_index('time').resample(self.sampling).mean().fillna(method='ffill', limit=30)
appliance_list = house_label.iloc[:, 1].values
app_index_dict = defaultdict(list)
#find if device exists in house and create a dictionary that contains the channel names
for appliance in self.appliance_names:
try:
idx = appliance_list.tolist().index(appliance)
app_index_dict[appliance].append(idx+1)
except ValueError:
app_index_dict[appliance].append(-1)
#if no devices found in house, remove the house and move to the next
if np.sum(list(app_index_dict.values())) == -len(self.appliance_names):
self.house_indicies.remove(house_id)
continue
#Read appliance data and merge
for appliance in self.appliance_names:
channel_idx = app_index_dict[appliance][0]
if channel_idx == -1:
house_data.insert(len(house_data.columns), appliance, np.zeros(len(house_data)))
else:
channel_path = house_folder.joinpath('channel_' + str(channel_idx) + '.dat')
appl_data = pd.read_csv(channel_path, sep = ' ', header = None)
appl_data.columns = ['time',appliance]
appl_data['time'] = pd.to_datetime(appl_data['time'],unit = 's')
appl_data = appl_data.set_index('time').resample(self.sampling).mean().fillna(method = 'ffill', limit = 30)
house_data = pd.merge(house_data, appl_data, how='inner', on='time')
if house_id == self.house_indicies[0]:
entire_data = house_data
if len(self.house_indicies) == 1:
entire_data = entire_data.reset_index(drop=True)
else:
entire_data = entire_data.append(house_data, ignore_index=True)
entire_data = entire_data.dropna().copy()
entire_data = entire_data[entire_data['aggregate'] > 0] #remove negative values (possible mistakes)
entire_data[entire_data < 5] = 0 #remove very low values
entire_data = entire_data.clip([0] * len(entire_data.columns), self.cutoff, axis=1) # force values to be between 0 and cutoff
return entire_data.values[:, 0], entire_data.values[:, 1]
def compute_status(self, data):
initial_status = data >= self.threshold[0]
status_diff = np.diff(initial_status)
events_idx = status_diff.nonzero()
events_idx = np.array(events_idx).squeeze()
events_idx += 1
if initial_status[0]:
events_idx = np.insert(events_idx, 0, 0)
if initial_status[-1]:
events_idx = np.insert(events_idx, events_idx.size, initial_status.size)
events_idx = events_idx.reshape((-1, 2))
on_events = events_idx[:, 0].copy()
off_events = events_idx[:, 1].copy()
assert len(on_events) == len(off_events)
if len(on_events) > 0:
off_duration = on_events[1:] - off_events[:-1]
off_duration = np.insert(off_duration, 0, 1000)
on_events = on_events[off_duration > self.min_off[0]]
off_events = off_events[np.roll(off_duration, -1) > self.min_off[0]]
on_duration = off_events - on_events
on_events = on_events[on_duration >= self.min_on[0]]
off_events = off_events[on_duration >= self.min_on[0]]
assert len(on_events) == len(off_events)
temp_status = data.copy()
temp_status[:] = 0
for on, off in zip(on_events, off_events):
temp_status[on: off] = 1
status = temp_status
return status
def get_train_datasets(self):
val_end = int(self.val_size * len(self.x))
val = NILMDataset(self.x[:val_end],
self.y[:val_end],
self.status[:val_end],
self.window_size,
self.window_size #non-overlapping windows
)
train = NILMDataset(self.x[val_end:],
self.y[val_end:],
self.status[val_end:],
self.window_size,
self.window_stride
)
return train, val
def get_pretrain_datasets(self, mask_prob=0.25):
val_end = int(self.val_size * len(self.x))
val = NILMDataset(self.x[:val_end],
self.y[:val_end],
self.status[:val_end],
self.window_size,
self.window_size
)
train = Pretrain_Dataset(self.x[val_end:],
self.y[val_end:],
self.status[val_end:],
self.window_size,
self.window_stride,
mask_prob=mask_prob
)
return train, val