forked from daumann/r-stockPrediction
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OptionallyRunTest.r
24 lines (20 loc) · 1023 Bytes
/
OptionallyRunTest.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Tests the code on first 10 stocks
stockVector = list()
BestPrediction = vector()
stockVector[[1]] = read.table("./input/A.csv", sep=",", header=TRUE)
stockVector[[2]] = read.table("./input/AA.csv", sep=",", header=TRUE)
stockVector[[3]] = read.table("./input/AAN.csv", sep=",", header=TRUE)
stockVector[[4]] = read.table("./input/AB.csv", sep=",", header=TRUE)
stockVector[[5]] = read.table("./input/ABC.csv", sep=",", header=TRUE)
stockVector[[6]] = read.table("./input/ABM.csv", sep=",", header=TRUE)
stockVector[[7]] = read.table("./input/ABT.csv", sep=",", header=TRUE)
stockVector[[8]] = read.table("./input/ABV.csv", sep=",", header=TRUE)
stockVector[[9]] = read.table("./input/ABX.csv", sep=",", header=TRUE)
stockVector[[10]] = read.table("./input/ACE.csv", sep=",", header=TRUE)
# Populate the Best Error Vector
for(i in 1:length(stockVector))
{
cat("\n*** predicting stock number: ",i) ;
BestPrediction[i] = findBestPrediction(stockVector[[i]])
}
cat("\n\n!!! winning models:", BestPrediction);