Skip to content

distance-based indexing structure for N-dimensional data

License

Notifications You must be signed in to change notification settings

starkdg/mvptree-graphdb

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MVP Tree Graph Database

The MVP Tree is a distance-based spatial indexing structure that is particularly well suited for higher N-dimensional metric spaces. Instead of indexing data by spatial coordinates, the mvp tree divides the points according to distances from arbitrarily chosen vantage points. A list of precomputed distances is stored with each datapoint to indicate that datapoint's distance from a list of respective vantage points. This path of distances serves as a filtering step to reduce the number of distance computations necessary for retrieval of nearest neighbor queries.

Features

  • Customizable parameter that define the tree shape - such as branch factor, number levels per node, number pre-computed distances, and a minimum capacity for leaf nodes.

  • A Generic type implementation, so data can be an array of any primitive data type. (e.g. float[], int[], byte[], long[], short[])

  • Non-recursive implementation

  • Use of L1, L2 or Hamming metric space distances.

  • Ability to customize additional metric spaces.

  • Persistent storage of tree and data points to a Neo4j graph database.

  • Query for all data points within a given radius of a target data point. Nearest-neighbor queries.

  • All data points are indexed for direct retrieval by a string Id.

  • Ability to delete points.

Parameters

  • branch factor (bf) - number of branches off of each internal node (e.g. 2 or 3)
  • no. levels (nl) - number of levels for each internal (non-leaf) node. (e.g. 2, 4 or 8)
  • path length (pl) - number of pre-computed distances to store for each data point. Each distance represents that point's distance from respective vantage point in a path from the root node down to the leaf node in which the data point is in. (e.g. 4, 8, 16, ...)
  • leaf minimum (lm) - Minimum data points in a leaf node.

Note: Before a leaf node is converted to an internal (non-leaf) node, it must be assigned at least (bf^nl)xlm number of datapoints. This ensures that internal nodes are well balanced with child nodes containing roughly similar number of datapoints. So, leaf nodes contain anywhere betwen lm and ((bf^nl)xlm - 1) data points.

Metric Space

The tree works for any metric space such that for any two points, x and y, the following conditions apply:

  1. distance(x,y) = distance(y,x) (commutative)
  2. Inf > distance(x,y) > 0 (positively bounded)
  3. distance(x,y) <= distance(x,z) + distance(z,y) (triangle inequality)

Instructions

mvn package
mvn test
mvn install
mvn javadoc

Dependencies

  • Neo4j v3.0.1
  • Appache Commons Lang v3.7
  • JCommander v1.30
  • JUnit Testing framework v4.12

References

Bozkaya, Ozsoyoglu, 1999

Releases

No releases published

Packages

No packages published