We recommend using these caffe models with py-RFCN-priv
Network | mAP | mAP@50 | mAP@75 | mAP@S | mAP@M | mAP@L |
---|---|---|---|---|---|---|
RFCN-se-inception-v2 with ms-train & ohem & multigrid |
32.6 | 53.6 | 34.5 | 12.5 | 35.1 | 48.4 |
RFCN-se-inception-v2 with ms-train & ohem & multigrid & bbox-voting & soft-nms & flipping & ms-test |
36.8 | 59.8 | 38.7 | 19.7 | 39.8 | 49.1 |
RFCN-se-resnet50 with ms-train & ohem & multigrid |
32.9 | 54.4 | 34.8 | 13.0 | 35.3 | 48.1 |
FPN-Faster-inception-v4 with ms-train |
36.5 | 58.5 | 38.8 | 16.5 | 38.8 | 52.1 |
FPN-Faster-inception-v4 with ms-train & bbox-voting & soft-nms |
38.3 | 61.0 | 40.8 | 20.0 | 41.5 | 51.4 |
FPN-Faster-inception-v4 with ms-train & bbox-voting & soft-nms & flipping & ms-test |
39.5 | 62.5 | 42.3 | 23.3 | 43.2 | 51.0 |
RFCN-air101 with ms-train & ohem & multigrid |
38.2 | 60.1 | 41.2 | 18.2 | 41.9 | 53.0 |
RFCN-air101 with extra-7-epochs & ms-train & ohem & multigrid |
38.5 | 60.2 | 41.4 | 18.3 | 42.1 | 53.4 |
RFCN-air101 with ms-train & ohem & multigrid & bbox-voting & soft-nms & flipping |
40.4 | 63.5 | 43.5 | 22.6 | 44.4 | 52.0 |
RFCN-air101 with ms-train & ohem & multigrid & bbox-voting & soft-nms & flipping & ms-test |
41.8 | 65.3 | 45.3 | 26.1 | 45.6 | 52.4 |
RFCN-air101 with ms-train & ohem & multigrid & bbox-voting & soft-nms & flipping & assign-ms-test |
42.1 | 64.6 | 45.6 | 25.6 | 44.5 | 54.1 |
RFCN-air101 with ms-train & ohem & multigrid & deformpsroi & bbox-voting & soft-nms & flipping & assign-ms-test |
43.2 | 66.0 | 46.7 | 25.6 | 46.3 | 55.9 |
Faster-2fc-air101 with ms-train & ohem & multigrid |
36.5 | 60.4 | 38.1 | 15.5 | 39.5 | 53.5 |
- All the models are test on a single scale (600*1000) without any bells and whistles;
2. Context Pyramid Attention Network (CPANet) results training on MSCOCO2017-trainval and testing on test-dev2017.
Network | mAP | mAP@50 | mAP@75 | mAP@S | mAP@M | mAP@L |
---|---|---|---|---|---|---|
CPANet-air101 with ms-train & ohem & multigrid & 600-scale-test |
40.1 | 62.2 | 43.4 | 19.4 | 44.4 | 55.9 |
CPANet-air101 with ms-train & ohem & multigrid & 800-scale-test |
41.9 | 64.8 | 45.5 | 24.0 | 45.9 | 54.6 |
CPANet-air101 with ms-train & ohem & multigrid & 800-scale-test & snms |
42.7 | 65.4 | 46.7 | 24.6 | 46.8 | 55.6 |
CPANet-air101 with ms-train & ohem & multigrid & 800-scale-test & snms & flipping |
43.5 | 65.9 | 47.5 | 25.1 | 47.7 | 56.6 |
Network | mAP | mAP@50 | mAP@75 | mAP@S | mAP@M | mAP@L | mAR@10 |
---|---|---|---|---|---|---|---|
RFCN-se-air14-thin-specific with ms-train & ohem & multigrid |
21.5 | 48.9 | 16.5 | 12.3 | 27.3 | 30.8 | 28.6 |
RFCN-resnet18-specific with ms-train & ohem & multigrid |
38.5 | 66.1 | 39.8 | 16.8 | 47.1 | 63.0 | 41.9 |
RFCN-se-resnet50-specific with 800-scale-train & ohem & multigrid |
39.0 | 64.1 | 41.1 | 13.5 | 48.4 | 66.4 | 43.9 |
RFCN-se-resnet50-specific with ms-train & ohem & multigrid |
41.9 | 67.7 | 44.3 | 18.6 | 51.0 | 67.9 | 46.0 |
RFCN-se-resnet50-specific with ms-train & ohem & multigrid & snms & flip & ms-test |
44.6 | 72.8 | 47.3 | 25.3 | 54.4 | 63.3 | 49.8 |
RFCN-se-resnet50 with ms-train & ohem & multigrid |
42.7 | 72.0 | 44.5 | 21.0 | 51.1 | 66.4 | 45.4 |
RFCN-se-inception-v2-specific with ms-train & ohem & multigrid |
41.2 | 66.7 | 43.2 | 17.6 | 50.0 | 68.3 | 45.1 |
RFCN-se-inception-v2 with ms-train & ohem & multigrid |
42.3 | 71.4 | 44.2 | 19.5 | 50.7 | 67.2 | 44.9 |
RFCN-se-inception-v2 with ms-train & ohem & multigrid & bbox-voting & soft-nms & flipping & ms-test |
48.0 | 79.5 | 50.0 | 28.3 | 55.8 | 67.5 | 50.8 |
RFCN-air101 with ms-train & ohem & multigrid & deformpsroi & bbox-voting & soft-nms & flipping & assign-ms-test |
54.0 | 83.9 | 58.2 | 35.2 | 61.6 | 73.0 | 55.1 |
CPANet-air101 with ms-train & ohem & multigrid & 600-scale-test |
47.7 | 76.4 | 51.1 | 25.3 | 56.8 | 70.6 | 50.2 |
CPANet-air101 with ms-train & ohem & multigrid & 800-scale-test & snms & flipping |
53.4 | 82.7 | 58.0 | 33.1 | 61.8 | 73.3 | 55.0 |