Skip to content

Commit

Permalink
Tweaked the tolerance for most calls to sginv() to be a little more p…
Browse files Browse the repository at this point in the history
…ermissive to small eigenvalues.
  • Loading branch information
krivit committed Dec 9, 2023
1 parent 56158a6 commit 209778b
Show file tree
Hide file tree
Showing 8 changed files with 12 additions and 12 deletions.
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
Package: ergm
Version: 4.6-7275
Date: 2023-11-29
Version: 4.6-7276
Date: 2023-12-09
Title: Fit, Simulate and Diagnose Exponential-Family Models for Networks
Authors@R: c(
person(c("Mark", "S."), "Handcock", role=c("aut"), email="handcock@stat.ucla.edu"),
Expand Down
2 changes: 1 addition & 1 deletion R/ergm.MCMLE.R
Original file line number Diff line number Diff line change
Expand Up @@ -321,7 +321,7 @@ ergm.MCMLE <- function(init, s, s.obs,
# if some statistic has a variance of exactly 0.
novar <- diag(Vm) == 0
Vm[!novar,!novar] <- snearPD(Vm[!novar,!novar,drop=FALSE], posd.tol=0, base.matrix=TRUE)$mat
iVm <- sginv(Vm)
iVm <- sginv(Vm, tol=.Machine$double.eps^(3/4))
diag(Vm)[novar] <- sqrt(.Machine$double.xmax) # Virtually any nonzero difference in estimating functions will map to a very large number.
d2 <- xTAx(estdiff, iVm)
if(d2<2) last.adequate <- TRUE
Expand Down
6 changes: 3 additions & 3 deletions R/ergm.estimate.R
Original file line number Diff line number Diff line change
Expand Up @@ -225,7 +225,7 @@ ergm.estimate<-function(init, model, statsmatrices, statsmatrices.obs=NULL,
# or more statistics.
if(inherits(Lout$par,"try-error")){
Lout$par <- try(eta0
+ sginv(-Lout$hessian) %*%
+ sginv(-Lout$hessian, tol=.Machine$double.eps^(3/4)) %*%
xobs,
silent=TRUE)
}
Expand Down Expand Up @@ -339,10 +339,10 @@ ergm.estimate<-function(init, model, statsmatrices, statsmatrices.obs=NULL,
}

covar <- matrix(NA, ncol=length(theta), nrow=length(theta))
covar[!model$etamap$offsettheta,!model$etamap$offsettheta ] <- sginv(-Lout$hessian)
covar[!model$etamap$offsettheta, !model$etamap$offsettheta] <- sginv(-Lout$hessian, tol=.Machine$double.eps^(3/4))
dimnames(covar) <- list(names(theta),names(theta))
He <- matrix(NA, ncol=length(theta), nrow=length(theta))
He[!model$etamap$offsettheta,!model$etamap$offsettheta ] <- Lout$hessian
He[!model$etamap$offsettheta, !model$etamap$offsettheta] <- Lout$hessian
dimnames(He) <- list(names(theta),names(theta))
Lout$hessian <- He

Expand Down
2 changes: 1 addition & 1 deletion R/ergm.logitreg.R
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ ergm.logitreg <- function(x, y, wt = rep(1, length(y)),
names(fit$coefficients) <- dn[if(!is.null(m)) !m$etamap$offsettheta else TRUE]
fit$deviance <- -2*fit$value
fit$iter <- fit$iterations
asycov <- sginv(-fit$hessian)
asycov <- sginv(-fit$hessian, tol=.Machine$double.eps^(3/4))
fit$cov.unscaled <- asycov
if(!fit$converged)
message("Trust region algorithm did not converge.")
Expand Down
2 changes: 1 addition & 1 deletion R/ergm.mple.R
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ ergm.mple<-function(s, s.obs, init=NULL,
covar[!is.na(theta)&!m$etamap$offsettheta,
!is.na(theta)&!m$etamap$offsettheta] <- real.cov
hess[!is.na(theta)&!m$etamap$offsettheta,
!is.na(theta)&!m$etamap$offsettheta] <- if(length(real.cov)) -sginv(real.cov) else matrix(0,0,0)
!is.na(theta)&!m$etamap$offsettheta] <- if(length(real.cov)) -sginv(real.cov, tol=.Machine$double.eps^(3/4)) else matrix(0,0,0)
#
iteration <- mplefit$iter

Expand Down
2 changes: 1 addition & 1 deletion R/ergm.pen.glm.R
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ ergm.pen.glm <- function(formula,
iter <- iter + 1
XW2 <- sweep(x, 1, (weights*(pi * (1 - pi)))^0.5, "*") #### X' (W ^ 1/2)
Fisher <- crossprod(XW2) #### X' W X
covs <- sginv(Fisher) ### (X' W X) ^ -1
covs <- sginv(Fisher, tol=.Machine$double.eps^(3/4)) ### (X' W X) ^ -1
# H <- crossprod(XW2, covs) %*% XW2
# H <- XW2 %*% covs %*% t(XW2)
diagH <- pi
Expand Down
4 changes: 2 additions & 2 deletions R/ergm.san.R
Original file line number Diff line number Diff line change
Expand Up @@ -363,8 +363,8 @@ san.ergm_model <- function(object, reference=~Bernoulli, constraints=~., target.
stats <- sm[nrow(sm),]
# Use *proposal* distribution of statistics for weights.
invcov <-
if(control$SAN.invcov.diag) sginv(diag(diag(cov(sm.prop)), ncol(sm.prop)), tol=.Machine$double.eps)
else sginv(cov(sm.prop), tol=.Machine$double.eps)
if(control$SAN.invcov.diag) sginv(diag(diag(cov(sm.prop)), ncol(sm.prop)), tol=.Machine$double.eps^(3/4))
else sginv(cov(sm.prop), tol=.Machine$double.eps^(3/4))

# Ensure no statistic has weight 0:
diag(invcov)[abs(diag(invcov))<.Machine$double.eps] <- min(diag(invcov)[abs(diag(invcov))>=.Machine$double.eps],1)
Expand Down
2 changes: 1 addition & 1 deletion R/vcov.ergm.R
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ vcov.ergm <- function(object, sources=c("all","model","estimation"), ...){
if(is.null(object$hessian) && is.null(object$covar)){
object$covar <- matrix(NA, p, p)
}
v.mod <- NVL(object$covar, sginv(-object$hessian))
v.mod <- NVL(object$covar, sginv(-object$hessian, tol=.Machine$double.eps^(3/4)))
v.mod[is.na(diag(v.mod))|diag(v.mod)<0|is.infinite(coef(object)),] <- NA
v.mod[,is.na(diag(v.mod))|diag(v.mod)<0|is.infinite(coef(object))] <- NA
v.mod[object$offset,] <- 0
Expand Down

0 comments on commit 209778b

Please sign in to comment.