forked from aliyun/aicb
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmegatron_gpt.sh
executable file
·251 lines (245 loc) · 7.19 KB
/
megatron_gpt.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
#!/bin/sh
set -x
: ${WORLD_SIZE:=1}
: ${RANK:=0}
: ${MASTER_ADDR:="localhost"}
: ${MASTER_PORT:=29500}
NUM_GPUS=$(nvidia-smi -L | wc -l) # Get the number of GPUs on a single node
model_size=13
num_layers=40
num_attention_heads=40
hidden_size=5120
seq_length=2048
micro_batch=1
epoch_num=1
tensor_model_parallel_size=8
pipeline_model_parallel=1
vocab_size=50257
model_name=gpt_13b
ga_num=2
sp_enable=
frame=Megatron
aiob_enable=
max_position_embeddings=4096
num_experts=1
moe_enable=
enable_visual=
workload_only=
usage() {
echo "Usage: \$0 [options]
options:
--frame Communication framework: $frame
--world_size World size (number of nodes): $WORLD_SIZE
--tensor_model_parallel_size Tensor parallelism size: $tensor_model_parallel_size
--pipeline_model_parallel Pipeline parallelism size: $pipeline_model_parallel
--global_batch Global batch size: $global_batch
--micro_batch Micro batch size: $micro_batch
--num_layers Number of layers: $num_layers
--seq_length Sequence length: $seq_length
--hidden_size Hidden size: $hidden_size
--epoch_num Number of epochs: $epoch_num
--num_attention_heads Number of attention heads: $num_attention_heads
--aiob_enable Enable AIOB: $aiob_enable
--enable_visual Enable Visualization $enable_visual
--workload_only generate workload only
--use_flash_attn Use flash attention: $use_flash_attn
--swiglu Use SWIGLU: $swiglu
--ffn_hidden_size FFN hidden size: $ffn_hidden_size
--comp_filepath Computation file path: $comp_filepath
--model_name Model name: $model_name
-m, --model_size model size, defaults to $model_size (possible values: 175, 22, 13, 7)
--max_position_embeddings Max position embeddings: $max_position_embeddings
--nnodes Number of nodes: $WORLD_SIZE
--node_rank Rank of the node: $RANK
--nproc_per_node Number of GPUs per node: $NUM_GPUS
--master_addr Master address: $MASTER_ADDR
--master_port Master port: $MASTER_PORT
--me_enable enable moe
--moe_router_topk Number of experts to route to for each token.
--expert_model_parallel_size Degree of expert model parallelism
--num_experts Number of experts in the MoE model.
--moe_grouped_gemm apply grouped gemm
-h, --help Display this help and exit"1>&2; exit 1;
}
while [ $# -gt 0 ]
do
echo "Processing argument: $1"
case $1 in
--frame)
frame=$2; shift;;
--world_size)
world_size=$2; shift;;
--tensor_model_parallel_size|tp_num)
tensor_model_parallel_size=$2; shift;;
--pipeline_model_parallel|pp_num)
pipeline_model_parallel=$2; shift;;
--global_batch)
global_batch=$2; shift;;
--micro_batch)
micro_batch=$2; shift;;
--num_layers)
num_layers=$2; shift;;
--seq_length)
seq_length=$2; shift;;
--hidden_size)
hidden_size=$2; shift;;
--epoch_num)
epoch_num=$2; shift;;
--num_attention_heads)
num_attention_heads=$2; shift;;
--aiob_enable)
aiob_enable=--aiob_enable;;
--enable_visual)
enable_visual=--enable_visual;;
--workload_only)
workload_only=--workload_only;;
--use_flash_attn)
use_flash_attn=--use_flash_attn;;
--swiglu)
swiglu=--swiglu;;
--ffn_hidden_size)
ffn_hidden_size=$2; shift;;
--sp|--sp-enable|--enable_sequence_parallel)
sp_enable=--enable_sequence_parallel;;
--comp_filepath)
comp_filepath=$2; shift;;
-m|--model_size)
model_size=$2; shift;;
--moe_enable)
moe_enable=--moe_enable;;
--moe_router_topk|--topk)
moe_router_topk=$2; shift;;
--num_experts|--experts)
num_experts=$2; shift;;
--expert_model_parallel_size|--ep)
expert_model_parallel_size=$2; shift;;
--grouped_gemm|--moe_grouped_gemm)
grouped_gemm=--moe_grouped_gemm;;
--nnodes)
WORLD_SIZE=$2;shift;;
--node_rank)
RANK=$2;shift;;
--nproc_per_node)
NUM_GPUS=$2;shift;;
--master_addr)
MASTER_ADDR=$2;shift;;
--master_port)
MASTER_PORT=$2;shift;;
-h|--help)
usage ;;
(*)
break;;
esac
shift
done
case $model_size in
175)
model_name=gpt_175B
num_layers=96
hidden_size=12288
num_attention_heads=96
tensor_model_parallel_size=8
;;
22)
model_name=gpt_22B
num_layers=48
hidden_size=6144
num_attention_heads=64
tensor_model_parallel_size=8
;;
13)
model_name=gpt_13B
num_layers=40
hidden_size=5120
num_attention_heads=40
;;
7)
model_name=gpt_7B
num_layers=36
hidden_size=4096
num_attention_heads=32
;;
405)
model_name=llama_405B
num_layers=128
hidden_size=16384
ffn_hidden_size=53248
num_attention_heads=128
tensor_model_parallel_size=8
pipeline_model_parallel=16
;;
65)
model_name=llama_65B
num_layers=80
hidden_size=8192
ffn_hidden_size=28672
num_attention_heads=64
tensor_model_parallel_size=8
pipeline_model_parallel=2
;;
moe)
model_name=Mixtral_8*7B
num_layers=32
hidden_size=4096
num_attention_heads=32
ffn_hidden_size=14336
tensor_model_parallel_size=2
moe_enable=--moe_enable
grouped_gemm=--moe_grouped_gemm
;;
(*)
echo "Only support model size 405,175,22,13,7 or moe; using default size 13"
model_name=gpt_13B
num_layers=40
hidden_size=5120
num_attention_heads=40
;;
esac
dp_num=$((world_size/tensor_model_parallel_size/pipeline_model_parallel))
global_batch=$((ga_num*dp_num*micro_batch))
if [ $workload_only ]; then
script="python -m workload_generator.generate_megatron_workload"
else
script="./aicb.py"
fi
cmd="$script \
--frame=$frame \
--model_name=$model_name \
--world_size=$(($WORLD_SIZE * $NUM_GPUS)) \
--tensor_model_parallel_size=$tensor_model_parallel_size \
--micro_batch=$micro_batch \
--global_batch=$global_batch \
--epoch_num=$epoch_num \
--num_layers=$num_layers \
--hidden_size=$hidden_size \
--num_attention_heads=$num_attention_heads \
--seq_length=$seq_length \
--vocab_size=$vocab_size \
--pipeline_model_parallel=$pipeline_model_parallel \
--use-distributed-optimizer \
--max_position_embeddings=$max_position_embeddings \
${aiob_enable} \
${enable_visual} \
${workload_only} \
${sp_enable} \
${use_flash_attn} \
${swiglu} \
${ffn_hidden_size:+--ffn_hidden_size=$ffn_hidden_size} \
${comp_filepath:+--comp_filepath=$comp_filepath} \
${moe_enable} \
${moe_router_topk:+--moe_router_topk=$moe_router_topk} \
${num_experts:+--num_experts=$num_experts} \
${expert_model_parallel_size:+--expert_model_parallel_size=$expert_model_parallel_size} \
${grouped_gemm}"
echo $cmd
if [ $workload_only ]; then
$cmd
else
torchrun \
--nnodes $WORLD_SIZE \
--node_rank $RANK \
--nproc_per_node $NUM_GPUS \
--master_addr $MASTER_ADDR \
--master_port $MASTER_PORT \
$cmd
fi