-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMAPR_IPM_v1.jags
124 lines (83 loc) · 5 KB
/
MAPR_IPM_v1.jags
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
model {
#-------------------------------------------------
# integrated population model for the MacGillivray's Prion population
# - age structured model with 4 age classes
# - adult survival based on CMR ringing data
# - productivity based on Prion Cave nest monitoring data
# - simplified population process with informed prior for adults skipping breeding and uninformed immatures recruiting
# - TWO future scenarios to project population growth with and without eradication
# -------------------------------------------------
#-------------------------------------------------
# 1. PRIORS FOR ALL DATA SETS
#-------------------------------------------------
# -------------------------------------------------
# 1.1. Priors and constraints FOR FECUNDITY
# -------------------------------------------------
mean.fec ~ dunif(0,1) ## uninformative prior with upper bound from Nevoux & Barbraud (2005)
full.fec ~ dnorm(0.519,1000) ## prior for full fecundity without predation from Nevoux & Barbraud (2005) - very high precision
# -------------------------------------------------
# 1.2. Priors and constraints FOR SURVIVAL
# -------------------------------------------------
phi ~ dunif(0.7, 1)
p ~ dunif(0, 1)
juv.surv <- juv.surv.prop*phi
juv.surv.prop ~ dnorm(mean.juv.surv.prop,1000) T(0,1)
#-------------------------------------------------
# 2. LIKELIHOODS AND ECOLOGICAL STATE MODEL
#-------------------------------------------------
# -------------------------------------------------
# 2.1. System process: female based matrix model
# -------------------------------------------------
for (scen in 1:2){
fec.proj[scen]<-max(mean.fec,(scen-1)*full.fec) ## takes current fecundity for scenario 1 and full fecundity for scenario 2
### INITIAL VALUES FOR COMPONENTS FOR YEAR 1 - based on stable stage distribution from previous model
JUV[1,scen]<-max(2,round(Ntot.breed[1,scen]*0.5*fec.proj[scen]))
N1[1,scen]<-round(Ntot.breed[1,scen]*0.5*fec.proj[scen]*juv.surv)
N2[1,scen]<-round(Ntot.breed[1,scen]*0.5*fec.proj[scen]*juv.surv*phi)
N3[1,scen]<-round(Ntot.breed[1,scen]*0.5*fec.proj[scen]*juv.surv*phi*phi)
Ntot.breed[1,scen] ~ dnorm(POP.SIZE,10) # initial value of population size
for (tt in 2:PROJ){
## THE PRE-BREEDERS ##
nestlings[tt,scen] <- round(fec.proj[scen] * 0.5 * Ntot.breed[tt,scen]) ### number of locally produced FEMALE chicks
JUV[tt,scen] ~ dpois(nestlings[tt,scen]) ### need a discrete number otherwise dbin will fail, dpois must be >0
N1[tt,scen] ~ dbin(juv.surv, max(2,round(JUV[tt-1,scen]))) ### number of 1-year old survivors
N2[tt,scen] ~ dbin(phi, max(2,round(N1[tt-1,scen]))) ### number of 2-year old survivors
N3[tt,scen] ~ dbin(phi, max(2,round(N2[tt-1,scen]))) ### number of 3-year old survivors
## THE BREEDERS ##
Ntot.breed[tt,scen] ~ dbin(phi, max(2,round(N3[tt-1,scen]+Ntot.breed[tt-1,scen]))) ### the annual number of breeding birds is the sum of old breeders and recent recruits
} # tt
} # scen
# -------------------------------------------------
# 2.2. Likelihood for fecundity: Poisson regression from the number of surveyed broods
# -------------------------------------------------
for (t in 1:(T.fec)){ ### T-1 or not
J[t] ~ dpois(rho.fec[t])
rho.fec[t] <- R[t]*mean.fec
} # close loop over every year in which we have fecundity data
# -------------------------------------------------
# 2.3. Likelihood for adult and juvenile survival from CMR
# -------------------------------------------------
for (i in 1:nind){
# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){
# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi * z[i,t-1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p * z[i,t]
} #t
} #i
# -------------------------------------------------
# 4. DERIVED POPULATION GROWTH RATE
# -------------------------------------------------
## DERIVED POPULATION GROWTH RATE
for (scen in 1:2){
for (tt in 1:(PROJ-1)){
lambda[tt,scen]<-Ntot.breed[tt+1,scen]/max(1,Ntot.breed[tt,scen])
loglam[tt,scen]<-log(lambda[tt,scen])
} ## end of tt
growth.rate[scen] <- exp((1/(PROJ-1))*sum(loglam[1:(PROJ-1),scen])) ### geometric mean growth rate
} ## end of scen
} ## END MODEL LOOP