Skip to content

Latest commit

 

History

History
124 lines (92 loc) · 2.95 KB

README.md

File metadata and controls

124 lines (92 loc) · 2.95 KB

pyJedAI as a component

Dockerized pyJedAI for integration into the KLMS.

Code

Find all source code here.

Documentation

Find all documentation here.

Overview​

pyJedAI is a python framework, aiming to offer experts and novice users, robust and fast solutions for multiple types of Entity Resolution problems. It is builded using state-of-the-art python frameworks. pyJedAI constitutes the sole open-source Link Discovery tool that is capable of exploiting the latest breakthroughs in Deep Learning and NLP techniques, which are publicly available through the Python data science ecosystem. This applies to both blocking and matching, thus ensuring high time efficiency, high scalability as well as high effectiveness, without requiring any labelled instances from the user.

Input format​ [NOT FINAL]

{
    "input": [
        "s3://agroknow-bucket/incidents.csv"
    ],
    "parameters": {
        "separator": ",",
        "id_column_name_1" : "Unnamed: 0",
        "vectorizer": "st5",
        "similarity_search": "faiss",
        "top_k": 1,
        "similarity_threshold": 0.9
    },
    "minio": {
        "endpoint_url": "XXXXXXXXX",
        "id": "XXXXXXXXX",
        "key": "XXXXXXXXX",
        "bucket": "XXXXXXXXX"
    }
}

Output JSON format [NOT FINAL]

{
        "message": "pyJedAI project executed successfully!",
    "output": [
        {
            "name": "List of predicted duplicates",
            "path": null
        }
    ],
    "metrics": {
        "f1": 6.294964028776979,
        "precision": 97.22222222222221,
        "recall": 3.2527881040892193
    },
    "status": 200
}

Parameters​

  • "separator": File separator,
  • "id_column_name_1" : Coilumn containing ids,
  • "vectorizer": Language model,
  • "similarity_search": Similarity search framework,
  • "top_k": Number of NNs,
  • "similarity_threshold": Threshold for determing duplicates

Metrics​

  • "f1": F1 score
  • "precision": Precision
  • "recall": Recall

Installation & Usage instructions​

General

PyPI

Install the latest version of pyjedai [requires python >= 3.8]:

pip install pyjedai

More on PyPI.

Git

Set up locally:

git clone https://github.com/AI-team-UoA/pyJedAI.git

go to the root directory with cd pyJedAI and type:

pip install .

Docker

Available at Docker Hub, or clone this repo and:

docker build -f Dockerfile

STELAR KLMS Docker

To build the docker image:

docker build --no-cache -t stelar_pyjedai .

and to execute

docker run -v <local-path-with-logs>:/app/logs/ -v <local-path-with-data>:/app/data/ stelar_pyjedai:latest input.json output.json

License & Acknowledgments​

Released under the Apache-2.0 license (see LICENSE.txt).