-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathempty-product-ranges.html
361 lines (336 loc) · 15.2 KB
/
empty-product-ranges.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<!-- 2022-03-14 Mon 13:59 -->
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<title>Empty Product for certain Views</title>
<meta name="generator" content="Org Mode" />
<style>
#content { max-width: 60em; margin: auto; }
.title { text-align: center;
margin-bottom: .2em; }
.subtitle { text-align: center;
font-size: medium;
font-weight: bold;
margin-top:0; }
.todo { font-family: monospace; color: red; }
.done { font-family: monospace; color: green; }
.priority { font-family: monospace; color: orange; }
.tag { background-color: #eee; font-family: monospace;
padding: 2px; font-size: 80%; font-weight: normal; }
.timestamp { color: #bebebe; }
.timestamp-kwd { color: #5f9ea0; }
.org-right { margin-left: auto; margin-right: 0px; text-align: right; }
.org-left { margin-left: 0px; margin-right: auto; text-align: left; }
.org-center { margin-left: auto; margin-right: auto; text-align: center; }
.underline { text-decoration: underline; }
#postamble p, #preamble p { font-size: 90%; margin: .2em; }
p.verse { margin-left: 3%; }
pre {
border: 1px solid #e6e6e6;
border-radius: 3px;
background-color: #f2f2f2;
padding: 8pt;
font-family: monospace;
overflow: auto;
margin: 1.2em;
}
pre.src {
position: relative;
overflow: auto;
}
pre.src:before {
display: none;
position: absolute;
top: -8px;
right: 12px;
padding: 3px;
color: #555;
background-color: #f2f2f299;
}
pre.src:hover:before { display: inline; margin-top: 14px;}
/* Languages per Org manual */
pre.src-asymptote:before { content: 'Asymptote'; }
pre.src-awk:before { content: 'Awk'; }
pre.src-authinfo::before { content: 'Authinfo'; }
pre.src-C:before { content: 'C'; }
/* pre.src-C++ doesn't work in CSS */
pre.src-clojure:before { content: 'Clojure'; }
pre.src-css:before { content: 'CSS'; }
pre.src-D:before { content: 'D'; }
pre.src-ditaa:before { content: 'ditaa'; }
pre.src-dot:before { content: 'Graphviz'; }
pre.src-calc:before { content: 'Emacs Calc'; }
pre.src-emacs-lisp:before { content: 'Emacs Lisp'; }
pre.src-fortran:before { content: 'Fortran'; }
pre.src-gnuplot:before { content: 'gnuplot'; }
pre.src-haskell:before { content: 'Haskell'; }
pre.src-hledger:before { content: 'hledger'; }
pre.src-java:before { content: 'Java'; }
pre.src-js:before { content: 'Javascript'; }
pre.src-latex:before { content: 'LaTeX'; }
pre.src-ledger:before { content: 'Ledger'; }
pre.src-lisp:before { content: 'Lisp'; }
pre.src-lilypond:before { content: 'Lilypond'; }
pre.src-lua:before { content: 'Lua'; }
pre.src-matlab:before { content: 'MATLAB'; }
pre.src-mscgen:before { content: 'Mscgen'; }
pre.src-ocaml:before { content: 'Objective Caml'; }
pre.src-octave:before { content: 'Octave'; }
pre.src-org:before { content: 'Org mode'; }
pre.src-oz:before { content: 'OZ'; }
pre.src-plantuml:before { content: 'Plantuml'; }
pre.src-processing:before { content: 'Processing.js'; }
pre.src-python:before { content: 'Python'; }
pre.src-R:before { content: 'R'; }
pre.src-ruby:before { content: 'Ruby'; }
pre.src-sass:before { content: 'Sass'; }
pre.src-scheme:before { content: 'Scheme'; }
pre.src-screen:before { content: 'Gnu Screen'; }
pre.src-sed:before { content: 'Sed'; }
pre.src-sh:before { content: 'shell'; }
pre.src-sql:before { content: 'SQL'; }
pre.src-sqlite:before { content: 'SQLite'; }
/* additional languages in org.el's org-babel-load-languages alist */
pre.src-forth:before { content: 'Forth'; }
pre.src-io:before { content: 'IO'; }
pre.src-J:before { content: 'J'; }
pre.src-makefile:before { content: 'Makefile'; }
pre.src-maxima:before { content: 'Maxima'; }
pre.src-perl:before { content: 'Perl'; }
pre.src-picolisp:before { content: 'Pico Lisp'; }
pre.src-scala:before { content: 'Scala'; }
pre.src-shell:before { content: 'Shell Script'; }
pre.src-ebnf2ps:before { content: 'ebfn2ps'; }
/* additional language identifiers per "defun org-babel-execute"
in ob-*.el */
pre.src-cpp:before { content: 'C++'; }
pre.src-abc:before { content: 'ABC'; }
pre.src-coq:before { content: 'Coq'; }
pre.src-groovy:before { content: 'Groovy'; }
/* additional language identifiers from org-babel-shell-names in
ob-shell.el: ob-shell is the only babel language using a lambda to put
the execution function name together. */
pre.src-bash:before { content: 'bash'; }
pre.src-csh:before { content: 'csh'; }
pre.src-ash:before { content: 'ash'; }
pre.src-dash:before { content: 'dash'; }
pre.src-ksh:before { content: 'ksh'; }
pre.src-mksh:before { content: 'mksh'; }
pre.src-posh:before { content: 'posh'; }
/* Additional Emacs modes also supported by the LaTeX listings package */
pre.src-ada:before { content: 'Ada'; }
pre.src-asm:before { content: 'Assembler'; }
pre.src-caml:before { content: 'Caml'; }
pre.src-delphi:before { content: 'Delphi'; }
pre.src-html:before { content: 'HTML'; }
pre.src-idl:before { content: 'IDL'; }
pre.src-mercury:before { content: 'Mercury'; }
pre.src-metapost:before { content: 'MetaPost'; }
pre.src-modula-2:before { content: 'Modula-2'; }
pre.src-pascal:before { content: 'Pascal'; }
pre.src-ps:before { content: 'PostScript'; }
pre.src-prolog:before { content: 'Prolog'; }
pre.src-simula:before { content: 'Simula'; }
pre.src-tcl:before { content: 'tcl'; }
pre.src-tex:before { content: 'TeX'; }
pre.src-plain-tex:before { content: 'Plain TeX'; }
pre.src-verilog:before { content: 'Verilog'; }
pre.src-vhdl:before { content: 'VHDL'; }
pre.src-xml:before { content: 'XML'; }
pre.src-nxml:before { content: 'XML'; }
/* add a generic configuration mode; LaTeX export needs an additional
(add-to-list 'org-latex-listings-langs '(conf " ")) in .emacs */
pre.src-conf:before { content: 'Configuration File'; }
table { border-collapse:collapse; }
caption.t-above { caption-side: top; }
caption.t-bottom { caption-side: bottom; }
td, th { vertical-align:top; }
th.org-right { text-align: center; }
th.org-left { text-align: center; }
th.org-center { text-align: center; }
td.org-right { text-align: right; }
td.org-left { text-align: left; }
td.org-center { text-align: center; }
dt { font-weight: bold; }
.footpara { display: inline; }
.footdef { margin-bottom: 1em; }
.figure { padding: 1em; }
.figure p { text-align: center; }
.equation-container {
display: table;
text-align: center;
width: 100%;
}
.equation {
vertical-align: middle;
}
.equation-label {
display: table-cell;
text-align: right;
vertical-align: middle;
}
.inlinetask {
padding: 10px;
border: 2px solid gray;
margin: 10px;
background: #ffffcc;
}
#org-div-home-and-up
{ text-align: right; font-size: 70%; white-space: nowrap; }
textarea { overflow-x: auto; }
.linenr { font-size: smaller }
.code-highlighted { background-color: #ffff00; }
.org-info-js_info-navigation { border-style: none; }
#org-info-js_console-label
{ font-size: 10px; font-weight: bold; white-space: nowrap; }
.org-info-js_search-highlight
{ background-color: #ffff00; color: #000000; font-weight: bold; }
.org-svg { width: 90%; }
</style>
<script>
// @license magnet:?xt=urn:btih:1f739d935676111cfff4b4693e3816e664797050&dn=gpl-3.0.txt GPL-v3-or-Later
function CodeHighlightOn(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.classList.add("code-highlighted");
target.classList.add("code-highlighted");
}
}
function CodeHighlightOff(elem, id)
{
var target = document.getElementById(id);
if(null != target) {
elem.classList.remove("code-highlighted");
target.classList.remove("code-highlighted");
}
}
// @license-end
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
displayAlign: "center",
displayIndent: "0em",
"HTML-CSS": { scale: 100,
linebreaks: { automatic: "false" },
webFont: "TeX"
},
SVG: {scale: 100,
linebreaks: { automatic: "false" },
font: "TeX"},
NativeMML: {scale: 100},
TeX: { equationNumbers: {autoNumber: "AMS"},
MultLineWidth: "85%",
TagSide: "right",
TagIndent: ".8em"
}
});
</script>
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-AMS_HTML"></script>
</head>
<body>
<div id="content" class="content">
<h1 class="title">Empty Product for certain Views
<br />
<span class="subtitle"> </span>
</h1>
<ul class="org-ul">
<li>Document number: P2540R1</li>
<li>Date: 2022-02-06</li>
<li>Author: Steve Downey <sdowney2@bloomberg.net>, <sdowney@gmail.com></li>
<li>Audience: SG9, LEWG</li>
</ul>
<div class="ABSTRACT" id="orgec409f0">
<p>
Abstract: This paper argues that the Cartesian product of no ranges should be a single empty tuple, which is the identity element for Cartesian products. Other product-like views, however, should not automatically have their identity be the result, and in particular for <code>zip</code>, as it would introduce unsound inconsistencies.
</p>
</div>
<div id="outline-container-org72249c9" class="outline-2">
<h2 id="org72249c9"><span class="section-number-2">1.</span> Motivation</h2>
<div class="outline-text-2" id="text-1">
<p>
A natural extension of a product of two things is to a product of \(n\) things, that is from \(P = A \times B\) to \(P = \prod_{i=1}^n a_i = a_1 \cdots a_n\), where the \(\prod\) symbol stands for a repeated product, the same way that \(\sum\) stands for a repeated sum.
For \(n=1\), the expansion immediately suggests that \(P=a_1\), but the \(n=0\) case requires more care.
From the general rule that \(P_n a_{n+1}=P_{n+1}\), we have that \(P_0 a_1=a_1\), so \(P_0\) is the identity for the product.
This convention simplifies induction arguments and sometimes improves consistency with other well defined operations.
For example, having \(0^{0} = 1\), just as \(n^{0} = 1\) for all non-zero numbers, greatly simplifies Taylor series notation.
</p>
<p>
Also note that we are assuming up to isomorphism for types, and in particular that \((a, b, c)\) is isomorphic to \(((a, b), c)\), and \((a, (b, c))\), and further that the unit type \(()\) does not contribute, so that \(((), a) \equiv (a) \equiv (a, ())\). That is there exists a simple and mechanical bijective mapping, one-to-one and onto, between the types.
</p>
<p>
Making the empty product the identity element also puts <code>fold0</code> on a sounder footing. We don't have to supply an identity element because the base case gives it to us automatically.
</p>
<p>
The Cartesian product can also be viewed as the union of all relations between sets.
Any subset of the Cartesian product is a relation among the sets.
For any number of sets, there are always the trivial relations of \(\top\) (every combination is in the relation) and \(\bot\) (the relation is empty).
With zero sets, those are the only two relations, since there is no input variation on which the value might depend.
Accordingly, the Cartesian product of zero sets must have exactly one element (which is the empty tuple \(()\)) so as to have exactly the empty set and the whole set as relations.
</p>
<p>
The most general definition of product comes from Category Theory, of course, where it is well studied. And an important result is that for a Category, such as sets, there is one universal operation that is the product. This should make us suspicious of extending the empty product ≡ identity rule to other operations.
</p>
<p>
In particular, <code>zip</code> has the property that it is the inner join of the indexed sets, and is the main diagonal of the Cartesian product. However, the identity element for <code>zip</code> is <code>repeat(tuple<>)</code>, the infinite range of repeated empty tuples. If we allowed <code>zip</code> of an empty range of ranges to be its identity element, we would be introducing an inconsistency into the system, where two different formulations of notionally the same thing produces different answers. That would be bad.
</p>
</div>
</div>
<div id="outline-container-org0881987" class="outline-2">
<h2 id="org0881987"><span class="section-number-2">2.</span> Proposal</h2>
<div class="outline-text-2" id="text-2">
<p>
Specify that the Cartesian product of an empty range of ranges is a range of one element, which is the empty tuple, <code>std::tuple<></code>. The type <code>std::tuple<></code> is a monostate type, consisting of one element.
This design should <b>not</b> be extended to zip. If it were to be defined, the zip of an empty range of ranges should be the diagonal of the Cartesian product, but this is not actually useful, since that is annihilating for <code>zip</code>. It should be left undefined, as most operations on empty ranges are.
</p>
</div>
</div>
<div id="outline-container-orgd8d8c4a" class="outline-2">
<h2 id="orgd8d8c4a"><span class="section-number-2">3.</span> Wording</h2>
<div class="outline-text-2" id="text-3">
<p>
Wording is relative to p2374r3
</p>
</div>
<div id="outline-container-org059cfaa" class="outline-3">
<h3 id="org059cfaa"><span class="section-number-3">3.1.</span> Overview [range.cartesian.overview]</h3>
<div class="outline-text-3" id="text-3-1">
<p>
<code>cartesian_product_view</code> presents a view with a value type that represents the cartesian product of the adapted ranges.
</p>
<p>
The name <code>views::cartesian_product</code> denotes a customization point object. Given a pack of subexpressions <code>Es...</code>, the expression <code>views::cartesian_product(Es...)</code> is expression-equivalent to
</p>
<ul class="org-ul">
<li><del style="color: red;">*decay-copy*(views::empty<tuple<>>)</del><ins style="color: green;">views::single(tuple())</ins> if Es is an empty pack,</li>
<li>otherwise, cartesian_product_view<views::all_t<decltype((Es))>…>(Es…).</li>
</ul>
</div>
</div>
</div>
<div id="outline-container-orgf670c2b" class="outline-2">
<h2 id="orgf670c2b"><span class="section-number-2">4.</span> References</h2>
<div class="outline-text-2" id="text-4">
<p>
Reflector Discussion: [isocpp-lib-ext] zip and cartesian_product base case
<a href="https://lists.isocpp.org/lib-ext/2022/01/22023.php">https://lists.isocpp.org/lib-ext/2022/01/22023.php</a>
</p>
<p>
Twitter: <a href="https://twitter.com/sdowney/status/1482469504248598532">https://twitter.com/sdowney/status/1482469504248598532</a> and ff
</p>
<p>
Empty product - Wikipedia: <a href="https://en.wikipedia.org/wiki/Empty_product">https://en.wikipedia.org/wiki/Empty_product</a>
</p>
<p>
[P2374R3] Sy Brand, Michał Dominiak. 2021-12-13. views::cartesian_product
<a href="https://wg21.link/p2374r3">https://wg21.link/p2374r3</a>
</p>
</div>
</div>
</div>
</body>
</html>