-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMIMIC_preprocessing.py
131 lines (95 loc) · 3.8 KB
/
MIMIC_preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import pandas as pd
import numpy as np
import string
import re
import os
import sys
import importlib
from functools import reduce
"""
Initally created by Stephen Lizcano. @stevelizcano on GitHub.
MIT License.
This program loads the MIMICIII NOTEEVENTS and DIAGNOSES_ICD .csv files, extracts 'Discharge Summaries' from the Notes,
and matches them with the HADM_ID, or Hospital Admission ID, of the patients.
It drops any patient/note combos that have "NaNs" or missing data, or patients without an ICD9 diagnosis code.
It returns all three as a list that can then be used for Tokenization, etc.
"""
# Global vars
NOTE_LENGTHS = []
AVERAGE_NOTE_LENGTHS = 0
NUM_NOTES = 0
notes_filename = 'NOTEEVENTS.csv'
icd_filename = 'DIAGNOSES_ICD.csv'
def clean_note(note):
'''
This cleans the notes:
1) uses translation to remove the punctuation, and replace it with nothing.
2) the next part removes all new line carriages, tabs, and excess white space.
3) returns cleaned string.
ToDo: Examine replacing each [**First Name**] with fillers etc instead of removing brackets, creating uniformity
'''
if len(note.split()) < 5:
print('PROBLEM: Low Length Note')
NOTE_LENGTHS.append(len(note.split()))
# Convert to lower case - do metrics and see what works?
note = note.lower()
translator = str.maketrans('', '', string.punctuation)
note = note.translate(translator)
#note = ' '.join(note.split())
note = re.sub('\s+', ' ', note).strip()
return note
def create_icd_array(discharge_notes, diag_icd):
'''Create ICD Array: Creates list of icd codes, matched with a separate hospital admission id list
Then looks through and creates a note list that can match and be tokenized later
All three are then returned.
'''
# Items to be returned
icd_list = []
hadm_id_list = []
notes_list = []
# Create the df of discharge notes ***This used to have .dropna()!!!!
df = discharge_notes['HADM_ID']
print(len(df))
prev_el = 1
j = 0
for el in df:
icd_temp = []
el = int(el) # cast as int since notes for some reason has it as float
df2 = diag_icd[diag_icd['HADM_ID'] == el]
df2 = df2.dropna()
# Get codes, save to hadm_list
icd_temp = pd.Series.tolist(df2['ICD9_CODE'])
#if len(icd_temp) == 0: print('length zero found' + str(el))
# flag to check for duplicates
if len(icd_temp) != 0 and prev_el != el and len(icd_temp) != 0:
icd_list.append(icd_temp)
hadm_id_list.append(el)
#print('we good')
# This needs to be investigated further. Some notes are returned as multi-dimensional lists
notes_list.append(pd.Series.tolist(
discharge_notes[discharge_notes['HADM_ID'] == el].TEXT)[0])
elif len(icd_temp) == 0:
#print("dupe id prev: " + str(el))
#print("dupe id el: " + str(prev_el))
print("***")
print(el)
# pass
#print("dupe found?" + str(el))
# We can't convert to int, they need to be one hot encoded after converting with SKlearn label-encoder
#hadm_list = list(map(int, hadm_list))
j += 1
prev_el = el
return icd_list, hadm_id_list, notes_list
# Load the Notes and ICD .CSV
notes_df = pd.read_csv(notes_filename)
diag_icd_df = pd.read_csv(icd_filename)
# Clean the notes.
notes_df['TEXT'] = notes_df['TEXT'].apply(clean_note)
# Statistics
NUM_NOTES = len(NOTE_LENGTHS)
AVERAGE_NOTE_LENGTHS = reduce(lambda x, y: x + y, NOTE_LENGTHS) / NUM_NOTES
print('Num Notes: ' + str(NUM_NOTES) +
' Avg. Note Length: ' + str(int(AVERAGE_NOTE_LENGTHS)))
# Call Array transformation function, create_icd_array
print('...Done')
icdList, hadmList, notesList = create_icd_array(notes_df, diag_icd_df)