-
Notifications
You must be signed in to change notification settings - Fork 1
/
muscleStateTrackGRFPrescribe.m
384 lines (308 loc) · 16.3 KB
/
muscleStateTrackGRFPrescribe.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
function [Issues] = muscleStateTrackGRFPrescribe(Issues)
import org.opensim.modeling.*;
% create and name an instance of the MocoTrack tool
track = MocoTrack();
track.setName("muscle_statetrack_grfprescribe");
% construct ModelProcessor and sit it on the tool.
% replace default muscles with degrootefregly 2016 muscles, and adjust params
modelProcessor = ModelProcessor('simple_model_all_the_probes_adjusted.osim');
% modelProcessor = ModelProcessor("simple_model_all_the_probes.osim");
modelProcessor.append(ModOpAddExternalLoads('grf_walk.xml'));
% now to do stuff with the model
% modelProcessor = ModelProcessor(model);
% need to adjust some of the joints - weld them
weldem = StdVectorString();
% weldem.add('subtalar_r');
weldem.add('mtp_r');
% weldem.add('subtalar_l');
weldem.add('mtp_l');
% weldem.add('radius_hand_r');
% weldem.add('radius_hand_l');
modelProcessor.append(ModOpReplaceJointsWithWelds(weldem));
% model = modelProcessor.process();
% set up the base model
% modelProcessor.append(ModOpIgnoreTendonCompliance());
modelProcessor.append(ModOpReplaceMusclesWithDeGrooteFregly2016());
% only valid for degroote
% modelProcessor.append(ModOpIgnorePassiveFiberForcesDGF());
% only valid for degroote
modelProcessor.append(ModOpScaleActiveFiberForceCurveWidthDGF(1.5));
modelProcessor.append(ModOpAddReserves(1.0));
% now do tweaks to get tendon compliance
basemodel = modelProcessor.process();
basemodel.print('basemodel_simple_model_all_the_probes.osim');
% turn on the probes for the study - I think RRA turns some off?
basemodel = probeActivate(basemodel);
% updates
basemodel.initSystem();
basemuscles = basemodel.updMuscles();
numBaseMuscles = basemuscles.getSize();
% for m = 0:numBaseMuscles-1
% set tendon compliance on for certain muscles
% if lopt > lst want stiff (ignore)
% get the muscle
% basemusc = basemuscles.get(m);
% get lopt
% baselopt = basemusc.getOptimalFiberLength();
% get lst
% baselst = basemusc.getTendonSlackLength();
% set compliance if lopt > lst
% if baselopt < baselst
% basemusc.set_ignore_tendon_compliance(false)
% end
% end
%% do more model processor stuff
modelProcessorDC = ModelProcessor(basemodel);
modelProcessorDC.append(ModOpFiberDampingDGF(0.01));
% modelProcessorDC.append(ModOpAddReserves(1, 2.5, true));
modelProcessorDC.append(ModOpTendonComplianceDynamicsModeDGF('implicit'));
track.setModel(modelProcessorDC)
% construct a TableProcessor of the coordinate data and pass it to the tracking tool.
% 1
% track.setStatesReference(TableProcessor('torque_markertrack_grfprescribe_solution.sto'));
% tableProcessor = TableProcessor('coordinates_updated.mot');
tableProcessor = TableProcessor('./ResultsRRA_testing_2_2/subject01_walk1_RRA_Kinematics_q.sto');
% tableProcessor = TableProcessor(tabletrimming('torque_statetrack_grfprescribe_solution.sto'));
% tableProcessor = TableProcessor(tabletrimming('muscle_statetrack_grfprescribe_solution.sto'));
tableProcessor.append(TabOpLowPassFilter(6));
tableProcessor.append(TabOpUseAbsoluteStateNames());
track.setStatesReference(tableProcessor);
% track.set_kinematics_allow_extra_columns(true);
track.set_states_global_tracking_weight(100); % was trying 5 but previous was 10 |50 % need to weigh benefit of higher global vs specific coordinate
% avoid exceptions if markers in file are no longer in the model (arms removed)
track.set_allow_unused_references(true);
% since there is only coordinate position data in the states references,
% this fills in the missing coordinate speed data using
% the derivative of splined position data
track.set_track_reference_position_derivatives(true);
% set specific weights for the individual weight set
coordinateweights = MocoWeightSet();
coordinateweights.cloneAndAppend(MocoWeight("pelvis_tx", 1e5));
coordinateweights.cloneAndAppend(MocoWeight("pelvis_ty", 1e7));
coordinateweights.cloneAndAppend(MocoWeight("pelvis_tz", 1e3));
% coordinateweights.cloneAndAppend(MocoWeight("pelvis_list", 1000000));
% coordinateweights.cloneAndAppend(MocoWeight("pelvis_rotation", 1000000));
% coordinateweights.cloneAndAppend(MocoWeight("pelvis_tilt", 1000000));
coordinateweights.cloneAndAppend(MocoWeight("hip_rotation_r", 1e-6));
coordinateweights.cloneAndAppend(MocoWeight("hip_rotation_l", 1e-6));
% coordinateweights.cloneAndAppend(MocoWeight("hip_adduction_r", 100000));
% coordinateweights.cloneAndAppend(MocoWeight("hip_adduction_l", 100000));
% coordinateweights.cloneAndAppend(MocoWeight("ankle_angle_r", 1e2));
% coordinateweights.cloneAndAppend(MocoWeight("ankle_angle_l", 1e2));
coordinateweights.cloneAndAppend(MocoWeight("subtalar_angle_r", 1e-6));
coordinateweights.cloneAndAppend(MocoWeight("subtalar_angle_l", 1e-6));
coordinateweights.cloneAndAppend(MocoWeight('lumber_extension', 1000));
coordinateweights.cloneAndAppend(MocoWeight('lumber_bending', 1000));
coordinateweights.cloneAndAppend(MocoWeight('lumber_rotation', 1000));
track.set_states_weight_set(coordinateweights);
% get the subject name and gait timings
load 'G:\Shared drives\Exotendon\muscleModel\muscleEnergyModel\subjectgaitcycles.mat';
workdir = pwd;
[~,trialname,~] = fileparts(pwd);
cd ../
[~,conditionname,~] = fileparts(pwd);
cd ../
[~,subjectname,~] = fileparts(pwd);
cd(workdir);
gait_start = subjectgaitcycles.(genvarname(subjectname)).(genvarname(conditionname)).(genvarname(trialname)).initial;
gait_end = subjectgaitcycles.(genvarname(subjectname)).(genvarname(conditionname)).(genvarname(trialname)).final;
% set the times and mesh interval, mesh points are computed internally.
track.set_initial_time(gait_start);
track.set_final_time(gait_end);
track.set_mesh_interval(0.03); % 0.03 for all current subjects %.05 % .01%
% initialize and set goals
study = track.initialize();
% get reference to the MocoControlGoal that is added to every MocoTrack problem
problem = study.updProblem();
% set a constraint so that the model doesnt overlap feet
% distance = MocoFrameDistanceConstraint();
% distance.setName('minimum_distance');
% distance.addFramePair(java.lang.String('/bodyset/calcn_l'), java.lang.String('/bodyset/calcn_r'), 0.15, Inf); % 0.20
% distance.addFramePair(java.lang.String('/bodyset/toes_l'), java.lang.String('/bodyset/toes_r'), 0.15, Inf); %0.20
% distance.addFramePair(java.lang.String('/bodyset/calcn_l'), java.lang.String('/bodyset/toes_r'), 0.15, Inf); %0.20
% distance.addFramePair(java.lang.String('/bodyset/toes_l'), java.lang.String('/bodyset/calcn_r'), 0.15, Inf); %0.20
% problem.addPathConstraint(distance);
% prescribeTable = TableProcessor('muscleprescribe_states.sto');
% tableProcessor is the coordinates_updated
% tempkintable = TimeSeriesTable('coordinates_updated.mot');
%now need to go through and try to get them better
% experiment with orientation tracking
% torsoOrientationGoal = MocoOrientationTrackingGoal('torso_orientation_goal',1e3);
% % torsoOrientationGoal.setStatesReference(TableProcessor(tempkintable));
% torsoOrientationGoal.setStatesReference(tableProcessor);
% torsopaths = StdVectorString();
% torsopaths.add(java.lang.String('/bodyset/torso'));
% torsoOrientationGoal.setFramePaths(torsopaths);
% torsoOrientationGoal.setEnabled(true);
% problem.addGoal(torsoOrientationGoal);
% calc position tracking?
% calcnPositionGoal = MocoTranslationTrackingGoal('calcn_position_goal',1e4);
% calcnOrientationGoal.setStatesReference(TableProcessor(tempkintable));
% calcnOrientationGoal.setStatesReference(prescribeTable);
% calcpath = StdVectorString();
% calcpath.add(java.lang.String('/bodyset/calcn_r'));
% calcpath.add(java.lang.String('/bodyset/calcn_l'));
% calcnOrientationGoal.setFramePaths(calcpath);
% calcnOrientationGoal.setEnabled(true);
% problem.addGoal(calcnOrientationGoal);
% calcnOrientationGoal = MocoOrientationTrackingGoal('calcn_orientation_goal',1e4);
% % calcnOrientationGoal.setStatesReference(TableProcessor(tempkintable));
% calcnOrientationGoal.setStatesReference(prescribeTable);
% calcpath = StdVectorString();
% calcpath.add(java.lang.String('/bodyset/calcn_r'));
% calcpath.add(java.lang.String('/bodyset/calcn_l'));
% calcnOrientationGoal.setFramePaths(calcpath);
% calcnOrientationGoal.setEnabled(true);
% problem.addGoal(calcnOrientationGoal);
% shinOrientationGoal = MocoOrientationTrackingGoal('shin_orientation_goal',1e1);
% % calcnOrientationGoal.setStatesReference(TableProcessor(tempkintable));
% shinOrientationGoal.setStatesReference(tableProcessor);
% shinpath = StdVectorString();
% shinpath.add(java.lang.String('/bodyset/tibia_r'));
% shinpath.add(java.lang.String('/bodyset/tibia_l'));
% shinOrientationGoal.setFramePaths(shinpath);
% shinOrientationGoal.setEnabled(true);
% problem.addGoal(shinOrientationGoal);
% effort goal
effort = MocoControlGoal.safeDownCast(problem.updGoal('control_effort'));
effort.setWeight(0.5); % 0.1 for the new %.5 % been trying .25. previous was .1
% whatever the weight was before the alienware did really well withit
% for 007 natural1
initactivationgoal = MocoInitialActivationGoal('init_activation');
initactivationgoal.setWeight(10);
problem.addGoal(initactivationgoal);
% put large weight on the pelvis CoordinateActuators, which act as the
% residual, or 'hand-of-god' forces which we would like to keep small
model = modelProcessorDC.process();
model.print('post_simple_model_all_the_probes_muscletrack.osim');
model.initSystem();
forceSet = model.getForceSet();
for i=0:forceSet.getSize()-1
forcePath = forceSet.get(i).getAbsolutePathString();
if contains(string(forcePath), 'pelvis')
disp('okay should probably check pelvis stuff')
% effort.setWeightForControl(forcePath, 10); % here 1000
% if contains(string(forcePath), 'pelvis_ty')
% effort.setWeightForControl(forcePath, 1e8);
% end
elseif contains(string(forcePath), 'reserve') && contains(string(forcePath), 'subtalar')
effort.setWeightForControl(forcePath, 100);
elseif contains(string(forcePath), 'reserve') && contains(string(forcePath), 'hip_rotation')
effort.setWeightForControl(forcePath, 10)
end
% if contains(string(forcePath), 'hip_rotation')
% effort.setWeightForControl(forcePath, 10);
% end
end
% set our initial guesses
% twosteptraj = MocoTrajectory('muscle_stateprescribe_grfprescribe_solution.sto');
% twosteptraj = MocoTrajectory('muscle_statetrack_grfprescribe_solution.sto');
twosteptraj = MocoTrajectory('muscle_statetrack_grfprescribe_solution_100con.sto');
steps = twosteptraj.getNumTimes();
solver = MocoCasADiSolver.safeDownCast(study.updSolver());
solver.resetProblem(problem)
solver.set_optim_convergence_tolerance(.001); % 1e-2
solver.set_optim_constraint_tolerance(1e-4); % 1e-2
% solver = study.initCasADiSolver();
solver.set_optim_finite_difference_scheme('forward')
solver.set_parameters_require_initsystem(false);
% duration = finalTime - track.get_initial_time();
% num_mesh = round(duration/stepsize);
% solver.set_num_mesh_intervals(num_mesh);
solver.set_verbosity(2);
solver.set_optim_solver('ipopt');
% solver.set_optim_convergence_tolerance(convergeTolerance);
% solver.set_optim_constraint_tolerance(constraintTolerance);
solver.set_optim_max_iterations(10000);
solver.set_scale_variables_using_bounds(true);
solver.set_minimize_implicit_auxiliary_derivatives(true);
solver.set_implicit_auxiliary_derivatives_weight(1e-6);
% solver.set_parallel(24);
% solver.set_parallel(8);
% solver.set_parallel(12);
% solver.set_num_mesh_intervals(steps);
guess = solver.createGuess('bounds'); % bounds or random
guess.write('boundsguess.sto');
% solver.setGuess(guess);
randomguess = MocoTrajectory('boundsguess.sto');
if ~(randomguess.getNumTimes() == steps)
randomguess.resampleWithNumTimes(steps);
end
% go through and overwrite the states first
randomstatenames = randomguess.getStateNames();
% this will cover joint values, speeds, muscle activations, and norm
% tendon force
for s = 0:randomstatenames.size()-1
statename = randomstatenames.get(s);
% temprandom = randomguess.getStateMat(statename);
temp2step = twosteptraj.getStateMat(statename);
randomguess.setState(statename,temp2step);
end
% go through all the controls - excitations
randomcontrolnames = randomguess.getControlNames();
% this covers all excitations and reserves
for c = 0:randomcontrolnames.size()-1
controlname = randomcontrolnames.get(c);
% temprandom = randomguess.getControlMat(controlname);
temp2step = twosteptraj.getControlMat(controlname);
randomguess.setControl(controlname, temp2step);
end
% go through others??
% randomparamnames = randomguess.getParameterNames();
% this is empty in the normal condition
% multipliers
randommultnames = randomguess.getMultiplierNames();
for m = 0:randommultnames.size()-1
multname = randommultnames.get(m);
% temprandom = randomguess.getMultiplierMat(multname)
try
temp2step = twosteptraj.getMultiplierMat(mutlname);
randomguess.setMultiplier(multname, temp2step);
catch
disp('did not have the multiplier in the 2 step problem solution');
end
end
% now for the implicit derivatives
randomderivnames = randomguess.getDerivativeNames();
for d = 0:randomderivnames.size()-1
derivname = randomderivnames.get(d);
% temprandom = randomguess.getDerivativeMat(derivname);
temp2step = twosteptraj.getDerivativeMat(derivname);
randomguess.setDerivative(derivname, temp2step);
end
% now set the guess for the solver
solver.setGuess(randomguess);
% solve and visualize
solution = study.solve();
% solution = MocoTrajectory('muscle_statetrack_grfprescribe_solution_100con.sto');
% study.visualize(solution);
% generate a report and save
solution.write('muscle_statetrack_grfprescribe_solution_100con_rra.sto');
% study.visualize(MocoTrajectory("torque_statetrack_grfprescribe_solution.sto"));
STOFileAdapter.write(solution.exportToControlsTable(), 'muscletrack_controls_100con_rra.sto');
STOFileAdapter.write(solution.exportToStatesTable(), 'muscletrack_states_100con_rra.sto');
report = osimMocoTrajectoryReport(model, ...
'muscle_statetrack_grfprescribe_solution_100con_rra.sto', ...
'bilateral', true);
reportFilePath = report.generate();
pdfFilePath = reportFilePath(1:end-2);
pdfFilePath = strcat(pdfFilePath, 'pdf');
ps2pdf('psfile',reportFilePath,'pdffile',pdfFilePath, ...
'gscommand','C:\Program Files\gs\gs9.54.0\bin\gswin64.exe', ...
'gsfontpath','C:\Program Files\gs\gs9.54.0\Resource\Font', ...
'gslibpath','C:\Program Files\gs\gs9.54.0\lib');
% open(pdfFilePath);
% save('torque_statetrack_grfprescribe.mat');
disp('end state muscle track')
keyboard
% post analysis and validation
solution1 = MocoTrajectory('muscle_statetrack_grfprescribe_solution_100con_rra.sto');
solution2 = MocoTrajectory('muscle_statetrack_grfprescribe_solution_100con.sto');
Issues = [Issues; [java.lang.String('muscledrivensim'); java.lang.String('trackingproblem')]];
analyzeMetabolicCost(solution1, 'muscletrack');
% Issues = computeIDFromResult(Issues, solution1);
% analyzeMetabolicCost(solution);
% trackorprescribe = 'track';
% computeKinematicDifferences(solution, trackorprescribe);
% analyzeMetabolicCostSecond(solution2, 'muscletrack');
% end