Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

v1.3.2 #103

Merged
merged 6 commits into from
Nov 5, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions DESCRIPTION
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
Package: manynet
Title: Many Ways to Make, Modify, Map, Mark, and Measure Myriad Networks
Version: 1.3.1
Date: 2024-10-29
Version: 1.3.2
Date: 2024-11-05
Description: Many tools for making, modifying, mapping, marking, measuring,
and motifs and memberships of many different types of networks.
All functions operate with matrices, edge lists, and 'igraph', 'network', and 'tidygraph' objects,
Expand Down
1 change: 1 addition & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -442,6 +442,7 @@ export(net_components)
export(net_congruency)
export(net_connectedness)
export(net_core)
export(net_correlation)
export(net_degree)
export(net_density)
export(net_diameter)
Expand Down
7 changes: 7 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
# manynet 1.3.2

## Measuring

- Added `net_correlation()` for calculating the product-moment correlation between networks
- Improved speed of make_network_measure by retrieving single call at parent level

# manynet 1.3.1

## Package
Expand Down
13 changes: 9 additions & 4 deletions R/class_measures.R
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,10 @@ make_tie_measure <- function(out, .data) {
out
}

make_network_measure <- function(out, .data) {
make_network_measure <- function(out, .data, call) {
class(out) <- c("network_measure", class(out))
attr(out, "mode") <- net_dims(.data)
attr(out, "call") <- deparse(sys.calls())
attr(out, "call") <- call
out
}

Expand Down Expand Up @@ -107,13 +107,18 @@ summary.network_measure <- function(object, ...,
null = c("random","configuration"),
times = 500) {
null <- paste0("generate_", match.arg(null))
callItems <- trimws(strsplit(unlist(attr(object, "call")),
callItems <- trimws(strsplit(attr(object, "call"),
split = "\\(|\\)|,")[[1]])
idFun <- which(grepl("^net_", callItems))[1]
fun <- callItems[idFun]
dat <- callItems[idFun+1]
if(length(callItems)>2) oth <- callItems[3:length(callItems)] else
oth <- NULL
nulls <- vapply(mnet_progress_seq(times), function(r){
suppressMessages(get(fun)(get(null)(get(dat))))
if(is.null(oth))
suppressMessages(get(fun)(get(null)(get(dat)))) else
suppressMessages(get(fun)(get(null)(get(dat)),
gsub("\"", "", oth)))
}, FUN.VALUE = numeric(1))
out <- (object - mean(nulls))/stats::sd(nulls)
out[is.nan(out)] <- 0
Expand Down
8 changes: 4 additions & 4 deletions R/measure_centrality.R
Original file line number Diff line number Diff line change
Expand Up @@ -254,7 +254,7 @@ net_degree <- function(.data, normalized = TRUE,
out <- igraph::centr_degree(graph = .data, mode = direction,
normalized = normalized)$centralization
}
out <- make_network_measure(out, .data)
out <- make_network_measure(out, .data, call = deparse(sys.call()))
out
}

Expand Down Expand Up @@ -501,7 +501,7 @@ net_betweenness <- function(.data, normalized = TRUE,
} else {
out <- igraph::centr_betw(graph = graph)$centralization
}
out <- make_network_measure(out, .data)
out <- make_network_measure(out, .data, call = deparse(sys.call()))
out
}

Expand Down Expand Up @@ -846,7 +846,7 @@ net_closeness <- function(.data, normalized = TRUE,
mode = direction,
normalized = normalized)$centralization
}
out <- make_network_measure(out, .data)
out <- make_network_measure(out, .data, call = deparse(sys.call()))
out
}

Expand Down Expand Up @@ -1125,7 +1125,7 @@ net_eigenvector <- function(.data, normalized = TRUE){
out <- igraph::centr_eigen(manynet::as_igraph(.data),
normalized = normalized)$centralization
}
out <- make_network_measure(out, .data)
out <- make_network_measure(out, .data, call = deparse(sys.call()))
out
}

Expand Down
10 changes: 5 additions & 5 deletions R/measure_closure.R
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@ NULL
net_reciprocity <- function(.data, method = "default") {
if(missing(.data)) {expect_nodes(); .data <- .G()}
make_network_measure(igraph::reciprocity(manynet::as_igraph(.data), mode = method),
.data)
.data, call = deparse(sys.call()))
}

#' @rdname measure_closure
Expand All @@ -60,7 +60,7 @@ node_reciprocity <- function(.data) {
net_transitivity <- function(.data) {
if(missing(.data)) {expect_nodes(); .data <- .G()}
make_network_measure(igraph::transitivity(manynet::as_igraph(.data)),
.data)
.data, call = deparse(sys.call()))
}

#' @rdname measure_closure
Expand Down Expand Up @@ -103,7 +103,7 @@ net_equivalency <- function(.data) {
if (is.nan(out)) out <- 1
if(manynet::is_weighted(.data)) out <- out / mean(mat[mat>0])
} else {
out <- rowSums(vapply(cli::cli_progress_along(1:net_nodes(.data)), function(i){
out <- rowSums(vapply(mnet_progress_nodes(.data), function(i){
threepaths <- igraph::all_simple_paths(.data, i, cutoff = 3,
mode = "all")
onepaths <- threepaths[vapply(threepaths, length,
Expand All @@ -115,7 +115,7 @@ net_equivalency <- function(.data) {
}, FUN.VALUE = numeric(2)))
out <- out[1]/out[2]
}
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}

#' @rdname measure_closure
Expand Down Expand Up @@ -171,5 +171,5 @@ net_congruency <- function(.data, object2){
sum(twopaths *
(matrix(degrees, connects, connects) - twopaths)))
if (is.nan(output)) output <- 1
make_network_measure(output, .data)
make_network_measure(output, .data, call = deparse(sys.call()))
}
16 changes: 9 additions & 7 deletions R/measure_cohesion.R
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ net_density <- function(.data) {
} else {
out <- igraph::edge_density(manynet::as_igraph(.data))
}
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -52,7 +52,7 @@ net_components <- function(.data){
if(missing(.data)) {expect_nodes(); .data <- .G()}
object <- manynet::as_igraph(.data)
make_network_measure(igraph::components(object, mode = "strong")$no,
object)
object, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -69,7 +69,8 @@ net_components <- function(.data){
#' @export
net_cohesion <- function(.data){
if(missing(.data)) {expect_nodes(); .data <- .G()}
make_network_measure(igraph::cohesion(manynet::as_igraph(.data)), .data)
make_network_measure(igraph::cohesion(manynet::as_igraph(.data)),
.data, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -80,7 +81,8 @@ net_cohesion <- function(.data){
#' @export
net_adhesion <- function(.data){
if(missing(.data)) {expect_nodes(); .data <- .G()}
make_network_measure(igraph::adhesion(manynet::as_igraph(.data)), .data)
make_network_measure(igraph::adhesion(manynet::as_igraph(.data)),
.data, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -94,7 +96,7 @@ net_diameter <- function(.data){
object <- manynet::as_igraph(.data)
make_network_measure(igraph::diameter(object,
directed = manynet::is_directed(object)),
object)
object, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -108,7 +110,7 @@ net_length <- function(.data){
object <- manynet::as_igraph(.data)
make_network_measure(igraph::mean_distance(object,
directed = manynet::is_directed(object)),
object)
object, call = deparse(sys.call()))
}

#' @rdname measure_cohesion
Expand All @@ -123,5 +125,5 @@ net_independence <- function(.data){
} else {
out <- igraph::ivs_size(manynet::to_undirected(manynet::as_igraph(.data)))
}
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}
24 changes: 16 additions & 8 deletions R/measure_diffusion.R
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,8 @@ net_transmissibility <- function(diff_model){
out <- out[!is.infinite(out)]
out <- out[!is.nan(out)]
make_network_measure(mean(out, na.rm = TRUE),
attr(diff_model, "network"))
attr(diff_model, "network"),
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_net
Expand All @@ -84,7 +85,8 @@ net_recovery <- function(diff_model, censor = TRUE){
if(censor && any(!is.infinite(recovs) & !is.na(recovs)))
recovs[is.infinite(recovs)] <- nrow(diff_model)
make_network_measure(mean(recovs, na.rm = TRUE),
attr(diff_model, "network"))
attr(diff_model, "network"),
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_net
Expand Down Expand Up @@ -129,7 +131,8 @@ net_reproduction <- function(diff_model){
out <- net_transmissibility(diff_model)/
(1/net_recovery(diff_model))
out <- min(out, mean(node_deg(net)))
make_network_measure(out, net)
make_network_measure(out, net,
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_net
Expand Down Expand Up @@ -171,7 +174,8 @@ net_immunity <- function(diff_model, normalized = TRUE){
net <- attr(diff_model, "network")
out <- 1 - 1/net_reproduction(diff_model)
if(!normalized) out <- ceiling(out * net_nodes(net))
make_network_measure(out, net)
make_network_measure(out, net,
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_net
Expand Down Expand Up @@ -233,7 +237,8 @@ net_hazard <- function(diff_model){
diff_model <- as_diffusion(diff_model)
out <- (diff_model$I - dplyr::lag(diff_model$I)) /
(diff_model$n - dplyr::lag(diff_model$I))
make_network_measure(out, attr(diff_model, "network"))
make_network_measure(out, attr(diff_model, "network"),
call = deparse(sys.call()))
}

# net_infection ####
Expand Down Expand Up @@ -270,7 +275,8 @@ net_infection_complete <- function(diff_model){
diff_model <- as_diffusion(diff_model)
out <- which(diff_model$I == diff_model$n)[1]
if(is.na(out)) out <- Inf
make_network_measure(out, attr(diff_model, "network"))
make_network_measure(out, attr(diff_model, "network"),
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_infection
Expand All @@ -281,7 +287,8 @@ net_infection_total <- function(diff_model, normalized = TRUE){
diff_model <- as_diffusion(diff_model)
out <- sum(diff_model$I_new)
if(normalized) out <- out / diff_model$n[length(diff_model$n)]
make_network_measure(out, attr(diff_model, "network"))
make_network_measure(out, attr(diff_model, "network"),
call = deparse(sys.call()))
}

#' @rdname measure_diffusion_infection
Expand All @@ -291,7 +298,8 @@ net_infection_total <- function(diff_model, normalized = TRUE){
net_infection_peak <- function(diff_model){
diff_model <- as_diffusion(diff_model)
out <- which(diff_model$I_new == max(diff_model$I_new))[1]
make_network_measure(out, attr(diff_model, "network"))
make_network_measure(out, attr(diff_model, "network"),
call = deparse(sys.call()))
}

# node_diffusion ####
Expand Down
36 changes: 28 additions & 8 deletions R/measure_features.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ net_core <- function(.data,
if(is.null(mark)) mark <- node_is_core(.data)
out <- stats::cor(c(as_matrix(.data)),
c(as_matrix(create_core(.data, mark = mark))))
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}

#' @rdname measure_features
Expand Down Expand Up @@ -100,7 +100,7 @@ net_richclub <- function(.data){
coefs[is.nan(coefs)] <- 1
out <- coefs[elbow_finder(seq_along(coefs), coefs)]
# max(coefs, na.rm = TRUE)
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}

#' @rdname measure_features
Expand All @@ -118,7 +118,7 @@ net_factions <- function(.data,
out <- stats::cor(c(manynet::as_matrix(.data)),
c(manynet::as_matrix(manynet::create_components(.data,
membership = membership))))
make_network_measure(out, .data)
make_network_measure(out, .data, call = deparse(sys.call()))
}

#' @rdname measure_features
Expand Down Expand Up @@ -174,11 +174,12 @@ net_modularity <- function(.data,
if(is_twomode(.data)){
make_network_measure(igraph::modularity(to_multilevel(.data),
membership = membership,
resolution = resolution), .data)
resolution = resolution),
.data, call = deparse(sys.call()))
} else make_network_measure(igraph::modularity(.data,
membership = membership,
resolution = resolution),
.data)
.data, call = deparse(sys.call()))
}

#' @rdname measure_features
Expand Down Expand Up @@ -264,7 +265,7 @@ net_smallworld <- function(.data,
"sigma" = (co/cr)/(lo/lr),
"SWI" = ((lo - ll)/(lr - ll))*((co - cr)/(cl - cr)))
make_network_measure(out,
.data)
.data, call = deparse(sys.call()))
}

#' @rdname measure_features
Expand Down Expand Up @@ -304,7 +305,8 @@ net_scalefree <- function(.data){
"could have been drawn from a power-law",
"distribution rejected.\n"))
}
make_network_measure(out$alpha, .data)
make_network_measure(out$alpha, .data,
call = deparse(sys.call()))
}

#' @rdname measure_features
Expand Down Expand Up @@ -380,7 +382,8 @@ net_balance <- function(.data) {
}
tria_count <- count_signed_triangles(g)
make_network_measure(unname((tria_count["+++"] + tria_count["+--"])/sum(tria_count)),
.data)
.data,
call = deparse(sys.call()))
}


Expand All @@ -392,6 +395,7 @@ net_balance <- function(.data) {
#'
#' - `net_change()` measures the Hamming distance between two or more networks.
#' - `net_stability()` measures the Jaccard index of stability between two or more networks.
#' - `net_correlation()` measures the product-moment correlation between two networks.
#'
#' These `net_*()` functions return a numeric vector the length of the number
#' of networks minus one. E.g., the periods between waves.
Expand Down Expand Up @@ -436,4 +440,20 @@ net_stability <- function(.data, object2){
n10 <- sum(net1 * net2==0)
n11 / (n01 + n10 + n11)
}, FUN.VALUE = numeric(1))
}

#' @rdname measure_periods
#' @export
net_correlation <- function(.data, object2){
if(missing(.data)) {expect_nodes(); .data <- .G()}
comp1 <- as_matrix(.data)
comp2 <- as_matrix(object2)
if(!is_complex(.data)){
diag(comp1) <- NA
}
if(!is_directed(.data)){
comp1[upper.tri(comp1)] <- NA
}
out <- cor(c(comp1), c(comp2), use = "complete.obs")
make_network_measure(out, .data, call = deparse(sys.call()))
}
Loading
Loading