-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
266 lines (212 loc) · 11.7 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import utils
import numpy as np
import argparse
from model import EZVSL, MoVSL, VSGN
from datasets import get_test_dataset, inverse_normalize
import cv2
import torch.multiprocessing as mp
import torch.distributed as dist
from object_model import DINO
def get_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, default='./checkpoints', help='path to save trained model weights')
parser.add_argument('--experiment_name', type=str, default='movsl_vggss', help='experiment name (experiment folder set to "args.model_dir/args.experiment_name)"')
parser.add_argument('--save_visualizations', action='store_true', help='Set to store all VSL visualizations (saved in viz directory within experiment folder)')
# Dataset
parser.add_argument('--testset', default='flickr', type=str, help='testset (flickr or vggss)')
parser.add_argument('--test_data_path', default='', type=str, help='Root directory path of data')
parser.add_argument('--test_gt_path', default='', type=str)
parser.add_argument('--batch_size', default=1, type=int, help='Batch Size')
parser.add_argument('--num_class', default=37, type=int)
# mo-vsl hyper-params
parser.add_argument('--model', default='movsl')
parser.add_argument('--out_dim', default=512, type=int)
parser.add_argument('--num_negs', default=None, type=int)
parser.add_argument('--tau', default=0.03, type=float, help='tau')
parser.add_argument('--attn_assign', type=str, default='soft', help="type of audio grouping assignment")
parser.add_argument('--dim', type=int, default=512, help='dimensionality of features')
parser.add_argument('--depth_aud', type=int, default=3, help='depth of audio transformers')
parser.add_argument('--depth_vis', type=int, default=3, help='depth of visual transformers')
# evaluation parameters
parser.add_argument("--dropout_img", type=float, default=0, help="dropout for image")
parser.add_argument("--dropout_aud", type=float, default=0, help="dropout for audio")
parser.add_argument('--m_img', default=1.0, type=float, metavar='M', help='momentum for imgnet')
parser.add_argument('--m_aud', default=1.0, type=float, metavar='M', help='momentum for audnet')
parser.add_argument('--use_momentum', action='store_true')
parser.add_argument('--relative_prediction', action='store_true')
parser.add_argument('--use_mom_eval', action='store_true')
parser.add_argument('--pred_size', default=0.5, type=float)
parser.add_argument('--pred_thr', default=0.5, type=float)
parser.add_argument('--object_model_type', default='res18', type=str)
# Distributed params
parser.add_argument('--workers', type=int, default=8)
parser.add_argument('--gpu', type=int, default=None)
parser.add_argument('--world_size', type=int, default=1)
parser.add_argument('--rank', type=int, default=0)
parser.add_argument('--node', type=str, default='localhost')
parser.add_argument('--port', type=int, default=12345)
parser.add_argument('--dist_url', type=str, default='tcp://localhost:12345')
parser.add_argument('--multiprocessing_distributed', action='store_true')
return parser.parse_args()
def main(args):
mp.set_start_method('spawn')
args.dist_url = f'tcp://{args.node}:{args.port}'
print('Using url {}'.format(args.dist_url))
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
args.world_size = ngpus_per_node
mp.spawn(main_worker,
nprocs=ngpus_per_node,
args=(ngpus_per_node, args))
else:
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(local_rank, ngpus_per_node, args):
args.gpu = local_rank
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# Model dir
model_dir = os.path.join(args.model_dir, args.experiment_name)
viz_dir = os.path.join(model_dir, 'viz')
os.makedirs(viz_dir, exist_ok=True)
# Setup distributed environment
if args.multiprocessing_distributed:
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + local_rank
print(args.dist_url, args.world_size, args.rank)
dist.init_process_group(backend='nccl', init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
torch.distributed.barrier()
# Create model
if args.model.lower() == 'ezvsl':
audio_visual_model = EZVSL(args.tau, args.out_dim, args.dropout_img, args.dropout_aud)
elif args.model.lower() == 'vsgn':
audio_visual_model = VSGN(args.tau, args.out_dim, args.dropout_img, args.dropout_aud, args)
elif args.model.lower() == 'movsl':
audio_visual_model = MoVSL(args.tau, args.out_dim, args.dropout_img, args.dropout_aud, args.m_img, args.m_aud, args.use_mom_eval, num_neg=args.num_negs)
else:
raise ValueError
if args.object_model_type =='dino':
object_saliency_model = DINO(arch_type='vitb16')
else:
from torchvision.models import resnet18
object_saliency_model = resnet18(pretrained=True)
object_saliency_model.avgpool = nn.Identity()
object_saliency_model.fc = nn.Sequential(
nn.Unflatten(1, (512, 7, 7)),
NormReducer(dim=1),
Unsqueeze(1)
)
# object_saliency_model.fc = nn.Unflatten(1, (512, 7, 7))
if not torch.cuda.is_available():
print('using CPU, this will be slow')
else:
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
audio_visual_model.cuda(args.gpu)
object_saliency_model.cuda(args.gpu)
if args.multiprocessing_distributed:
audio_visual_model = torch.nn.parallel.DistributedDataParallel(audio_visual_model, device_ids=[args.gpu])
object_saliency_model = torch.nn.parallel.DistributedDataParallel(object_saliency_model, device_ids=[args.gpu])
# Load weights
ckp_fn = os.path.join(model_dir, 'best.pth')
if os.path.exists(ckp_fn):
ckp = torch.load(ckp_fn, map_location='cpu')
audio_visual_model.load_state_dict({k.replace('module.', ''): ckp['model'][k] for k in ckp['model']})
print(f'loaded from {os.path.join(model_dir, "best.pth")}')
else:
print(f"Checkpoint not found: {ckp_fn}")
# Dataloader
testdataset = get_test_dataset(args)
if args.multiprocessing_distributed:
sampler = torch.utils.data.DistributedSampler(testdataset, num_replicas=ngpus_per_node, rank=args.rank, shuffle=False)
else:
sampler = torch.utils.data.SequentialSampler(testdataset)
testdataloader = DataLoader(testdataset, batch_size=args.batch_size, sampler=sampler, num_workers=args.workers)
print("Loaded dataloader.")
validate(testdataloader, audio_visual_model, object_saliency_model, model_dir, args)
@torch.no_grad()
def validate(testdataloader, audio_visual_model, object_saliency_model, model_dir, args):
audio_visual_model.train(False)
object_saliency_model.train(False)
evaluator_av = utils.EvaluatorFull(default_conf_thr=0.5, pred_size=args.pred_size, pred_thr=args.pred_thr, results_dir=f"{model_dir}/av")
evaluator_obj = utils.EvaluatorFull(default_conf_thr=0.5, pred_size=args.pred_size, pred_thr=args.pred_thr, results_dir=f"{model_dir}/obj")
evaluator_av_obj = utils.EvaluatorFull(default_conf_thr=0., pred_size=args.pred_size, pred_thr=args.pred_thr, results_dir=f"{model_dir}/av_obj")
for step, (image, spec, bboxes, name) in enumerate(testdataloader):
if args.gpu is not None:
spec = spec.cuda(args.gpu, non_blocking=True)
image = image.cuda(args.gpu, non_blocking=True)
# Compute S_AVL
heatmap_av = audio_visual_model(image.float(), spec.float(), mode='test')[1].unsqueeze(1)
heatmap_av = F.interpolate(heatmap_av, size=(224, 224), mode='bicubic', align_corners=True)
heatmap_av = heatmap_av.data.cpu().numpy()
# Compute S_OBJ
img_feat = object_saliency_model(image)
heatmap_obj = F.interpolate(img_feat, size=(224, 224), mode='bicubic', align_corners=True)
heatmap_obj = heatmap_obj.data.cpu().numpy()
av_min, av_max = -1. / args.tau, 1. / args.tau
obj_min, obj_max = 0., 2.5
min_max_norm = lambda x, xmin, xmax: (x - xmin) / (xmax - xmin)
# Compute eval metrics and save visualizations
for i in range(spec.shape[0]):
gt_map = bboxes['gt_map'][i].data.cpu().numpy()
bb = bboxes['bboxes'][i]
bb = bb[bb[:, 0] >= 0].numpy().tolist()
n = heatmap_av[i, 0].size
scores_av = min_max_norm(heatmap_av[i, 0], av_min, av_max)
scores_obj = min_max_norm(heatmap_obj[i, 0], obj_min, obj_max)
scores_av_obj = scores_av * args.alpha + scores_obj * (1 - args.alpha)
conf_av = np.sort(scores_av.flatten())[-n//4:].mean()
conf_obj = np.sort(scores_obj.flatten())[-n//4:].mean()
conf_av_obj = np.sort(scores_av_obj.flatten())[-n//4:].mean()
if args.relative_prediction:
pred_av = utils.normalize_img(scores_av)
pred_obj = utils.normalize_img(scores_obj)
pred_av_obj = utils.normalize_img(scores_av_obj)
thr_av = np.sort(pred_av.flatten())[int(n * args.pred_size)]
thr_obj = np.sort(pred_obj.flatten())[int(n * args.pred_size)]
thr_av_obj = np.sort(pred_av_obj.flatten())[int(n * args.pred_size)]
else:
pred_av = scores_av
pred_obj = scores_obj
pred_av_obj = scores_av_obj
thr_av = thr_obj = thr_av_obj = args.pred_thr
evaluator_av.update(bb, gt_map, conf_av, pred_av, thr_av, name[i])
evaluator_obj.update(bb, gt_map, conf_obj, pred_obj, thr_obj, name[i])
evaluator_av_obj.update(bb, gt_map, conf_av_obj, pred_av_obj, thr_av_obj, name[i])
if args.save_visualizations:
evaluator_av.save_viz(image[i], bb, pred_av, name[i])
evaluator_obj.save_viz(image[i], bb, pred_obj, name[i])
evaluator_av_obj.save_viz(image[i], bb, pred_av_obj, name[i])
print(f'{step+1}/{len(testdataloader)}: AV+OGL-Prec@30={evaluator_av_obj.precision_at_30():.3f} AVL-Prec@30={evaluator_av.precision_at_30():.3f} OGL-Prec@30={evaluator_obj.precision_at_30():.3f}')
evaluator_av.save_results()
evaluator_obj.save_results()
evaluator_av_obj.save_results()
print('='*20 + ' AVL ' + '='*20)
stats_av = evaluator_av.finalize_stats()
print('\n'.join([f' - {k}: {stats_av[k]}' for k in sorted(stats_av.keys()) if stats_av[k] is not np.nan]))
print('='*20 + ' OGL ' + '='*20)
stats_obj = evaluator_obj.finalize_stats()
print('\n'.join([f' - {k}: {stats_obj[k]}' for k in sorted(stats_obj.keys()) if stats_obj[k] is not np.nan]))
print('='*20 + ' AV+OGL ' + '='*20)
stats_av_obj = evaluator_av_obj.finalize_stats()
print('\n'.join([f' - {k}: {stats_av_obj[k]}' for k in sorted(stats_av_obj.keys()) if stats_av_obj[k] is not np.nan]))
class NormReducer(nn.Module):
def __init__(self, dim):
super(NormReducer, self).__init__()
self.dim = dim
def forward(self, x):
return x.abs().mean(self.dim)
class Unsqueeze(nn.Module):
def __init__(self, dim):
super(Unsqueeze, self).__init__()
self.dim = dim
def forward(self, x):
return x.unsqueeze(self.dim)
if __name__ == "__main__":
main(get_arguments())