diff --git a/.github/workflows/run-tests-action.yaml b/.github/workflows/run-tests-action.yaml index 9005ad764..a7f97f675 100755 --- a/.github/workflows/run-tests-action.yaml +++ b/.github/workflows/run-tests-action.yaml @@ -15,6 +15,8 @@ jobs: steps: - name: Check out repository code uses: actions/checkout@v3 + - name: Fix git config + run: git config --global --add safe.directory /github/workspace - name: Install Conda environment with Micromamba uses: mamba-org/provision-with-micromamba@main with: diff --git a/Stoner/core/base.py b/Stoner/core/base.py index 35e6f5542..3e3a09b4d 100755 --- a/Stoner/core/base.py +++ b/Stoner/core/base.py @@ -306,7 +306,7 @@ class typeHintedDict(regexpDict): __regexTimestamp: RegExp = re.compile(r"Timestamp") __regexEvaluatable: RegExp = re.compile(r"^(Cluster||\d+D Array|List)") - __types: Dict[str, type] = dict( + __types: Dict[str, type] = dict( # pylint: disable=use-before-assignment [ # Key order does matter here! ("Boolean", bool), ("I32", int), diff --git a/Stoner/formats/generic.py b/Stoner/formats/generic.py index f9df277ea..2a83d6361 100755 --- a/Stoner/formats/generic.py +++ b/Stoner/formats/generic.py @@ -460,7 +460,7 @@ def load_tdms(new_data, filename=None, *args, **kargs): new_data.column_headers = tmp.column_headers new_data.metadata.update(grp.properties) else: - tmp = DataFile(grp.as_dataframe()) + tmp = make_Data(grp.as_dataframe()) new_data.data = tmp.data new_data.column_headers = tmp.column_headers except (IOError, ValueError, TypeError, StonerLoadError) as err: diff --git a/Stoner/plot/__init__.py b/Stoner/plot/__init__.py index 0eb240bba..7e555277e 100755 --- a/Stoner/plot/__init__.py +++ b/Stoner/plot/__init__.py @@ -7,7 +7,6 @@ :py:mod:`Stoner.plot.util` module provides some handy utility functions. """ - -from .core import PlotMixin - __all__ = ["PlotMixin", "formats", "utils"] +from .core import PlotMixin +from . import formats, utils diff --git a/Stoner/plot/classes.py b/Stoner/plot/classes.py deleted file mode 100755 index c6ad385b4..000000000 --- a/Stoner/plot/classes.py +++ /dev/null @@ -1,437 +0,0 @@ -# -*- coding: utf-8 -*- -"""Class that knows how to plot data.""" -from functools import partial -import weakref - -import numpy as np -import matplotlib.pyplot as plt -from matplotlib.figure import Figure -from matplotlib.axes import Axes - -from ..tools import isiterable, AttributeStore -from ..Core import DataFile -from .formats import DefaultPlotStyle -from . import plotters -from .utils import add_properties - - -def _trim_kargs(kargs, columns=False, figure=False, annotations=False): - """Trim keywrod arguments dictionary by moving groups of args to a secondary dictionary. - - Args: - kargs (dict): - Keyword Arguments to filter. - - Keyword Arguments: - columns, figure, annotations (bool): - Remove arguments associated with the corresponding class of items. - - Returns: - (tuple of dict, dict): - Classified arguments and unclassificed arguments. - """ - args = { - "columns": ["xcol", "ycol", "zcol", "xerr", "yerr", "zerr", "ucol", "vcol", "wcol"], - "figure": [ - "figsize", - "dpi", - "facecolor", - "edgecolor", - "frameon", - "subplotpars", - "tight_layout", - "constrained_layout", - ], - "annotations": ["xlabel", "ylabel", "zlabel", "title", "label_props"], - } - classified = {} - for var, name in zip([columns, figure, annotations], ["columns", "figure", "annotations"]): - if var: - trim = set(args[name]) & set(kargs.keys()) - for k in trim: - classified[k] = kargs.pop(k) - - return classified, kargs - - -def _setup_multi_axes(figure, ax, data, cols, kargs): - """Create multiple set of axes on one figure. - - Args: - figure (Figure): - The figure instance we are working with - ax (Axes): - The first Axes instance on the figure (we can assume this already exists) - data (list of 2D array): - The data values we are plotting. - kargs (dict): - Other keyword arguments. - - Returns a list of axes that is the same length as data for plotting on. - """ - axes = [ax] - mode = kargs.pop("multi", "common") # default operation - one set of axes - if mode == "common" or "zcol" in cols: # common axes or 3D plots bug out early - return axes * len(data) # Bugout - reuse the same axes each time - cols = AttributeStore({k: [col.get(k, None) for col in cols] for k in ["xcol", "ycol"]}) - if mode == "y2": # Workout whether we need new X and or Y axes. - for ix, (xc, yc) in enumerate(zip(cols["xcol"], cols["ycol"])): - if ix == 0: # Skip first axes - continue - xi = cols["xcol"].index(xc) - yi = cols["ycol"].index(yc) - if (xi == ix and yi == ix) or (xi != ix and yi != ix and xi != yi): # New X and Y cols - ax = figure.add_subplot(111, label=str(ix), frame_on=False) - newx, newy = True, True - elif xi == ix: - ax = ax.twiny() - newx, newy = True, False - elif yi == ix: - ax = ax.twinx() - newx, newy = False, True - else: - ax = axes[xi] - newx, newy = False, False - - # Setup the labels for second an subsequent axes - if newx: - ax.xaxis.tick_top() - ax.spines["top"].set_position(("axes", 0.8 + 0.2 * ix)) - ax.xaxis.set_label_position("top") - if newy: - ax.yaxis.tick_right() - ax.spines["right"].set_position(("axes", 0.8 + 0.2 * ix)) - ax.yaxis.set_label_position("right") - axes.append(ax) - return axes - if mode == "panels": # Panels are subplots with common x or y axes - if np.unique(cols["xcol"]).size == 1: - axes = figure.subplots(nrows=len(cols.ycol), sharex=True, gridspec_kw={"hspace": 0}) - elif np.unique(cols["ycol"]).size == 1: - axes = figure.subplots(ncols=len(cols.ycol), sharey=True, gridspec_kw={"vspace": 0}) - else: - mode = "subplots" # Can't set common x or y plots - if mode == "subplots": - m = int(np.floor(np.sqrt(len(cols.ycol)))) - n = int(np.ceil(len(cols.ycol) / m)) - axes = figure.subplots(nrows=m, ncols=n) - return axes - - -def _fix_labels(ax, xlabel=None, ylabel=None, zlabel=None, title=None, props=None): - """Fix the axes labels and titles for the current Axes. - - Args: - ax (Axes): - Current Axes instance to work with - - Keyword Arguments: - xlabel,ylabel,zlabel,title (str or None): - If None, no processesing of label is done (default), otherwise use str - props (dict or None): - Additional keyword arguments to pass. Can be a dictionary with keys xlabel, ylabel, zlabel title etc - for arguments specific to one label or arguments common to all. - - Returns: - (Axes): - Copy of ax - - Notes: - if the labels are set, the current value is checked, if it is the same as the new value, nothing is done, - otherwise append the extra label with a separating ; - """ - pr = {} if props is None else props # initialise pr with the extra keywords - xprops, yprops, zprops, tprops = ( - pr.pop("xlabel", {}), - pr.pop("xlabel", {}), - pr.pop("xlabel", {}), - pr.pop("xlabel", {}), - ) - for prop, label in zip([xprops, yprops, zprops, tprops], ["xlabel", "ylabel", "zlabel", "title"]): - val = locals()[label] - if val is None: # If we've not set the label carry on. - continue - val = val.replace(";", " ") # Needed to stop labels with ; from messing things up - new_pr = prop.copy() - new_pr.update(prop) - current = [x for x in plt.get(ax, label).split(";") if x != ""] - if val in current: - continue - else: - current.append(val) - current = ";".join(current) - setter = getattr(ax, f"set_{label}") - setter(current, **new_pr) - return ax - - -def _build_dispatcher(data): - """Workout the name of a plotting function to use given the data array supplied. - - Args: - data (structured numy array): - The data to plot as generated from PlotAttr._assemble_data - - Returns: - (str): - Name of plot method to call. - - Raises: - (ValueError): - If missing either x or y axis labels - """ - root = "plot_" - fields = data.dtype.fields - for name, br in [ - ("xcol", False), - ("ycol", False), - ("zcol", False), - ("ucol", True), - ("vcol", True), - ("wcol", True), - ]: - if name in fields: - root += name[0] - elif br: - break - if root.endswith("u"): - root = root[:-1] - if "x" not in root or "y" not in root: - raise ValueError("Unable to determine plot type - must have an x and y axis defined!") - return root - - -@add_properties((Axes, "_ax"), (Figure, "figure")) -class PlotAttr: - - """Defines an atribute that holds information relating to plotting data from a :py:class:`Stoner.Data` instance.""" - - def __init__(self, data: DataFile): - """Attach the DataFile instance to this PlotAttr instance.""" - self._data_ref = weakref.ref(data) - self._template = DefaultPlotStyle() - self._figure = None - - def __call__(self, *args, **kargs): - """Determine the plotting function to use and then call it, creating a new figure etc as required.""" - - figure = kargs.pop("figure", self._figure) - ax = kargs.pop("ax", None) - - for ix, missing in enumerate(["xcol", "ycol", "zcol", "ucol", "vcol", "wcol"]): # YTransfer args to kargs - if len(args) > ix and missing not in kargs: - kargs[missing] = args[ix] - elif len(args) == ix: - break - else: - raise ValueError(f"Unsure how to deal with argument {ix}") - - cols, data = self._assemble_data(**kargs) # Get a list of data - plot_funcs = [_build_dispatcher(d) for d in data] # Get the plot functions - num_plots = len(data) - col_kargs, kargs = _trim_kargs(kargs, columns=True) - fig_kargs, kargs = _trim_kargs(kargs, figure=True) - annotations, kargs = _trim_kargs(kargs, annotations=True) - - if (figure is None or (isinstance(figure, bool) and not figure)) and not isinstance( - ax, Axes - ): # new figure needed - figure, ax = self.template.new_figure(None, **fig_kargs) - elif isinstance(ax, Axes): # I we provide a an Axes instance then use those - figure = ax.get_figure() - ax = figure.axes.index(ax) - self.figure = figure - - if isinstance(ax, int) and len(self.axes) > ax: - ax = self.axes[ax] - if ax is None: - ax = figure.gca() - - labels = self._setup_labels(cols, **annotations) - if num_plots > 1: - axes = _setup_multi_axes(figure, ax, data, cols, kargs) - else: - axes = [ax] - for ix, (d, func, ax, plot_cols, plot_labels) in enumerate(zip(data, plot_funcs, axes, cols, labels)): - func = getattr(plotters, func, partial(self._no_plotter, func)) - func(ax, d, **kargs) - plot_lab = annotations.copy() - plot_lab.update(plot_labels) - _fix_labels(ax, **plot_lab) - self.template.customise_axes(ax, self._data) - - def _no_plotter(self, name, *args, **kargs): - """Catcher of illformed plotters.""" - raise RuntimeError(f"No plotting function defined for f{name} in Stoner.plot.plotters!") - - def _fix_cols(self, **kargs): - """Sorts out axis specs, replacing with contents from setas as necessary. - - Returns: - (list of AttributeStore): - An AttributeStore for each plot.""" - kargs = kargs.copy() # Avoid side effects ! - startx = kargs.pop("startx", 0) - c = self._data.setas._get_cols(startx=startx) - - for k in ["xcol", "ycol", "zcol"]: # Deal with tuples being passed as columns for col+err - if k in kargs and isinstance(kargs[k], tuple) and len(kargs[k]) == 2: - kargs[k[0] + "err"] = kargs[k][1] - kargs[k] = kargs[k][0] - - for k in "xcol", "xerr": # Sort out xcol and xerror - if k not in kargs or kargs[k] is None: - kargs[k] = c[k] - elif not isinstance(kargs[k], np.ndarray): # Deal with direct passing of values to plot - kargs[k] = self._data.find_col(kargs[k], force_list=True) - - for k in ["ycol", "zcol", "ucol", "vcol", "wcol", "yerr", "zerr"]: # these columns may be lists - if k not in kargs or kargs[k] is None and isiterable(c[k]) and len(c[k]) > 0: - kargs[k] = c[k] - elif not isinstance(kargs[k], np.ndarray): # Deal with direct passing of values to plot - kargs[k] = self._data.find_col(kargs[k], force_list=True) - - # Clenup kargs of unwanted keys now - for k in set(kargs.keys()) - {"xcol", "ycol", "zcol", "ucol", "vcol", "wcol", "xerr", "yerr", "zerr"}: - del kargs[k] - - for k, v in kargs.items(): # Force all kargs to be iterable - if not isiterable(v) or isinstance(v, np.ndarray): # Also wrap arrays - kargs[k] = [v] - # Number of plots is defined by the biggest number of spatial axes - num_plots = np.max([len(kargs.get(col, [])) for col in ["xcol", "ycol", "zcol"]]) - for col, err in [("xcol", "xerr"), ("ycol", "yerr"), ("zcol", "zerr")]: - if col not in kargs or len(kargs[col]) == 0: - kargs.pop(col, None) - kargs.pop(err, None) # Remove rror if spatial colun not defined. - continue - if len(kargs[col]) == 1 and len(kargs.get(err, [])) == 1: # Single xd or zf specified. - kargs[col] = kargs[col] * num_plots - kargs[err] = kargs[err] * num_plots - elif len(kargs[col]) != num_plots: # Now fix the length of the spatial column - kargs[col] = (kargs[col] * num_plots)[:num_plots] - if err in kargs and len(kargs[err]) != num_plots: # Pad up the error column with None - kargs[err].extend([None] * num_plots) - kargs[err] = kargs[err][:num_plots] - - for k in ["ucol", "vcol", "wcol"]: # Fix length of other columns - if k in kargs and len(kargs[k]) > 0 and len(kargs[k]) != num_plots: - kargs[k] = (kargs[k] * num_plots)[:num_plots] - else: - kargs.pop(k, None) - output = [AttributeStore({k: v[i] for k, v in kargs.items()}) for i in range(num_plots)] - return output - - def _setup_labels(self, cols, **kargs): - """Lookin the keyword arguments for xlabel/ylabel/zlabel/title and build into lists.""" - output = {"xlabel": [], "ylabel": [], "zlabel": [], "title": []} - num_plots = len(cols) - for arg, col in zip(["xlabel", "ylabel", "zlabel", "title"], ["xcol", "ycol", "zcol", ""]): - # Get the label from the kargs and ensure it is a list of length num_plots - label = kargs.get(arg, None) - if not isinstance(label, list): - label = [label] - label = (label * num_plots)[:num_plots] - - if col == "": # Title - output[arg].extend(kargs.get(arg, [self._data.basename] * num_plots)) - elif col != "" or col not in cols[0]: # If this isn't the title and the column is defined. - for ix, col_index in enumerate(cols): # For this column for each plot - if col_index.get(col, None) is not None and label[ix] is None: # Havew column but not label - output[arg].append(self._data.column_headers[col_index[col]]) # Use the column_header - else: - output[arg].append(label[ix]) # Use the label - else: - output[arg].extend([None] * num_plots) # Not needed. - output = [ - {k: v[i] for k, v in output.items()} for i in range(num_plots) - ] # convert dict of lists to list of dicts - return output - - def _assemble_data(self, **kargs): - """Assemble the data to be plotted as a list of structured 2D arrays. - - Keyword Arguments: - xcol, ycol, zcol, ucol, vcol, wcol, xerr, yerr, zerr (column index types): - Names, numbers or lists that can be used to identify columns. - - Returns: - (AttributeStore of colums, list of 2D structured arrays): - Each element in the list represents a separate plot, the structured column names represent - the columns to include in the plot. - """ - cols = self._fix_cols(scalar=False, **kargs) - output = [] - for i, plot_cols in enumerate(cols): - names = ["xcol"] - data = self._data[:, plot_cols.xcol] - for k in ["xerr", "ycol", "yerr", "zcol", "zerr", "ucol", "vcol", "wcol"]: - if plot_cols.get(k, None) is not None: - names.append(k) - data = np.column_stack([data, self._data[:, plot_cols[k]]]) - data = np.ma.compress_rows(data) # Rempove masked data points. - data.dtype = [(n, data.dtype) for n in names] - output.append(data) - return cols, output - - @property - def _data(self): - """Unpack the weakref to the data structure.""" - return self._data_ref() - - @property - def _ax(self): - """Return the current axis number.""" - if self._figure is None: - return None - return self._figure.gca() - - @property - def ax(self): - """Return the current axis number.""" - return self.axes.index(self.figure.gca()) - - @ax.setter - def ax(self, value): - """Change the current axis number or instance.""" - if isinstance(value, int) and 0 <= value < len(self.axes): - self.figure.sca(self.axes[value]) - elif isinstance(value, Axes) and value in self.axes: - self.figure.sca(value) - else: - raise IndexError("Figure doesn't have enough axes or didn't have those particular axes") - - @property - def axes(self): - """Get the axes ovject from the current figure.""" - return self.figure.axes - - @property - def figure(self): - """Return the current matplotlib.ffigure.""" - if not isinstance(self._figure, Figure): - self._figure, _ = self.template.new_figure() - return self._figure - - @figure.setter - def figure(self, val): - """Set figure either with a figure or by calling plt.figure().""" - if not isinstance(val, Figure): - val, _ = self.template.new_figure(val) # Try to treat this as a constructor to a new figure - self._figure = val - - @property - def template(self): - """Return the current plot template.""" - return self._template - - @template.setter - def template(self, value): - """Set the current template.""" - if isinstance(value, type) and issubclass(value, DefaultPlotStyle): - value = value() - if isinstance(value, DefaultPlotStyle): - self._template = value - else: - raise ValueError(f"Template is not of the right class:{type(value)}") - self._template.apply() diff --git a/Stoner/plot/plotters.py b/Stoner/plot/plotters.py deleted file mode 100755 index 9bfc1a915..000000000 --- a/Stoner/plot/plotters.py +++ /dev/null @@ -1,11 +0,0 @@ -# -*- coding: utf-8 -*- -"""Functions to carry out different types of plots.""" - - -def plot_xy(ax, data, **kargs): - """Make a 2D plot optionally with error bars.""" - if "xerr" in data.dtype.fields: - kargs["xerr"] = data["xerr"].ravel() - if "yerr" in data.dtype.fields: - kargs["yerr"] = data["yerr"].ravel() - ax.errorbar(data["xcol"].ravel(), data["ycol"].ravel(), **kargs) diff --git a/doc/samples/plotstyles/GBStyle.py b/doc/samples/plotstyles/GBStyle.py index 84dc7560a..4f894f2fb 100755 --- a/doc/samples/plotstyles/GBStyle.py +++ b/doc/samples/plotstyles/GBStyle.py @@ -9,5 +9,5 @@ path.join(__home__, "..", "doc", "samples", "sample.txt") ) d = Data(filename, setas="xy", template=GBPlotStyle) -d.y = d.y - (max(d.y) / 2) +d.y -= d.y.max() / 2.0 # pylint: disable=no-member d.plot() diff --git a/scripts/PCAR-New.py b/scripts/PCAR-New.py index fabe234c2..d85ca8270 100755 --- a/scripts/PCAR-New.py +++ b/scripts/PCAR-New.py @@ -125,7 +125,9 @@ def offset_correct(self): if self.config.has_option( "Options", "simple_offset" ) and self.config.getboolean("Options", "simple_offset"): - self.x -= 0.5 * (self.x.min() + self.x.max()) + self.x -= 0.5 * ( + self.x.min() + self.x.max() + ) # pylint: disable=no-member else: peaks = self.peaks( ycol=self.gcol,