-
Notifications
You must be signed in to change notification settings - Fork 0
stopdemir/Recognizing-Handwritten-Digits-by-using-Artificial-Neural-Network
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
% Here we briefly mention purposes of the code files Files of the first order methods: trainAdaDelta.m trainAdaGrad.m trainDiagonalQuasiNewton.m trainMomentumSGD.m Files to implement conjugate gradient in minFunc: applyNNetMinFunc.m % Main file loss_func.m % Loss function and its gradient % The following files are supplied along with David Stutz's paper Main file: applyStochasticSquaredErrorTwoLayerPerceptronMNIST.m Files to load and save the datasets: loadMNISTImages.m loadMNISTLabels.m saveMNISTImages.m Sigmoid and its gradient: logisticSigmoid.m dLogisticSigmoid.m Default SGD implementation: trainStochasticSquaredErrorTwoLayerPerceptron.m Validation of the results: validateTwoLayerPerceptron.m
About
Optimization for Big Data Term Project
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published