Skip to content

stuianna/DBOps

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Build Status Codecov GitHub

Python class helpers for sqlite3 and InfluxDB databases.

SQHelper (SqLite3 Databases)

Example: Create, read and remove a table working with just dataframes.

from dbops.sqhelper import SQHelper
import pandas as pd

>>> table_name = 'temperature'
>>> df = pd.DataFrame({"timestamp": [1587222785, 1587222786], 'celsius': [23.3, 23.9]})

>>> db = 'myDatabase.sql3'
>>> database = SQHelper(db)

# The dataframe column names are used for the table's column names. 
# All dataframe entries are automatically inserted.
>>> database.create_table(table_name,df)
['timestamp', 'celsius']

# Add some more entries to the database, in this case duplicates of the above entry are made.
>>> database.insert(table_name,df)
True

# Read the content back into a dataframe
>>> database.table_to_df(table_name)
   celsius   timestamp
0     34.2  1587222785
1     23.3  1587222785
2     23.9  1587222786
3     23.3  1587222785
4     23.9  1587222786

# Remove the table from the database
>>> database.remove_table(table_name);
True

Example: Create a table, add an entry and return it as a Pandas dataframe.

from dbops.sqhelper import SQHelper

>> db = 'myDatabase.sql3'
>>> table_name = 'temperature'
>>> columns = {'timestamp': 'NUMERIC', 'celsius': 'REAL'}

# Create a class instance for a single database
>>> database = SQHelper(db)

# Add a table to the database
>>> database.create_table(table_name,columns)
['timestamp', 'celsius']

# Get all the tables in the database
>>> database.get_table_names()
['temperature']

# Add an entry to the database
>>> new_entry = {'timestamp': 1587222785, 'celsius': 34.2}
>>> database.insert(table_name, new_entry)
True

# Return the table as a Pandas Dataframe
df = database.table_to_df(table_name)

# Return all rows based on a column query, returns matching rows as dataframe
>>> database.get_row(table_name, 'celsius', 34.2);
   celsius   timestamp
0     34.2  1587222785

Use help(SQHelper) for more detailed information.

InfluxDB

from dbops.imfluxhelper import InfluxHelper

# Create a class instance for a single database
>>> database = InfluxHelper('database_name')

# Check the database is connected to OK
>>> database.exists()
True

# Add a new measurement to the database as a dictionary
>>> data = {'timestamp': 1585848415, 'temperature': 23.3, 'humidity': 12.2, 'room': 'kitchen', 'house': 'home'}
>>> measurement = 'Environment'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, data, field_keys=fields, tag_keys=tags, use_timestamp=True)
True

# Add multiple measurements as a Pandas DataFrame
>>> data = [{
    'timestamp': 1585848415,
    'temperature': 23.3,
    'humidity': 12.2,
    'room': 'kitchen',
    'house': 'home'
}, {
    'timestamp': 1585848416,
    'temperature': 22.1,
    'humidity': 13.4,
    'room': 'bedroom',
    'house': 'home'
}]
>>> df = pd.DataFrame(data)
>>> measurement = 'Household'
>>> fields = ['temperature', 'humidity']
>>> tags = ['room', 'house']
>>> database.insert(measurement, df, field_keys=fields, tag_keys=tags, use_timestamp=use_time)
True

# Get all the measurements in the database
>>> database.get_measurement_names()
['Environment', 'Household']

# Get the last time based entry in a table
>>> last_time_entry = database.get_last_time_entry('Household', 'humidity', 'room', 'bedroom', as_unix=True)
>>> last_time_entry['last']
13.4
>>> last_time_entry['time']
1585848416

Use help(InfluxHelper) for more detailed information.

Version History

0.1.0:

  • Added interface for Influx Databases
  • Added some timestamp conversion utilities
  • Improved documentation