-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_retrieval.py
992 lines (863 loc) · 38.6 KB
/
train_retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT finetuning runner."""
from __future__ import absolute_import, division, print_function
import argparse
import logging
import os
import sys
import random
from tqdm import tqdm, trange
import numpy as np
import torch
import torch.nn.functional as F
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from torch.nn import MarginRankingLoss
from tensorboardX import SummaryWriter
from pytorch_pretrained_bert.file_utils import WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, WarmupLinearSchedule
from knrm import BertKnrm
from data_utils import (
processors,
convert_train_examples_to_features,
convert_eval_examples_to_features
)
from data_utils import read_bioasq_json_file
import pickle
import json
import time
import config
logger = logging.getLogger(__name__)
def features(args, processor, set_type, tokenizer, test_batch_num=None):
"""Prepare features for training, evaluation or predictions
with BERT.
Parameters
----------
args : argparse.ArgumentParser
Argument parser object as initialized with BERT.
processor : DataProcessor
Data processing class for converting texts to
required format.
set_type : str
Data set type, one of ["train", "dev", "test"].
test_batch_num : int, optional
Test batch number of BioASQ in 1 to 5. Required only
when ``set_type`` is "test".
Returns
-------
all_input_ids : a torch.LongTensor
Batch of input sequences converted to their ids.
Shape of tensor depends on ``set_type``, if "train"
then shape is [batch size x 2 x sequence length]
(2 is because each example is a pair of <<query `i`,
relevant document `j`>, <query `i`, irrelevant document
`k`>> to rightly pass for ``MarginRankingLoss``).
In case of "dev" and "test" it is simply [batch size x
sequence length] since we only have <query, document>
pairs at inference.
all_segment_ids : a torch.LongTensor
Types indices selected in [0, 1]. Type 0 corresponds
to a `sentence A` and type 1 corresponds to a `sentence B`
token (see BERT paper for more details). Shapes follow
same rules as ``all_input_ids``.
all_input_mask : a torch.LongTensor
Mask with values in [0, 1]. Shapes follow same rules
as ``all_input_ids``.
"""
# Prepare data loader
if set_type == "train":
examples = processor.get_train_examples(args.data_dir)
elif set_type == "dev":
examples = processor.get_dev_examples(args.data_dir)
else:
# should be from 1 to 5
if not test_batch_num:
raise ValueError("test batch number required")
examples = processor.get_test_examples(args.data_dir, test_batch_num)
cache_fname_base = '{0}_{1}_{2}'.format(
list(filter(None, args.bert_model.split('/'))).pop(),
str(args.max_seq_length),
str("alinger")
)
if set_type == "test":
cache_fname_base += "_6b{}".format(test_batch_num)
cached_features_file = os.path.join(
args.data_dir,
"{}_{}".format(set_type, cache_fname_base)
)
try:
with open(cached_features_file, "rb") as reader:
if set_type == "train":
features = pickle.load(reader)
else:
features, guids = pickle.load(reader)
except:
if set_type == "train":
features = convert_train_examples_to_features(
examples, args.max_seq_length, tokenizer
)
else:
features, guids = convert_eval_examples_to_features(
examples, args.max_seq_length, tokenizer
)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(
" Saving %s features into cached file %s"
% (set_type, cached_features_file)
)
with open(cached_features_file, "wb") as writer:
if set_type == "train":
pickle.dump(features, writer)
else:
pickle.dump((features, guids), writer)
#
# feature set in case of *train* is composed of:
# - <question, +ve doc>, <question, -ve doc>
# all_* : -1 x 2 x max_seq_length
#
if set_type == "train":
all_input_ids = torch.cat([
to_tensor([f.input_ids for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
all_input_mask = torch.cat([
to_tensor([f.input_mask for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
all_segment_ids = torch.cat([
to_tensor([f.segment_ids for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
return (all_input_ids, all_segment_ids, all_input_mask), len(examples)
else:
all_input_ids = to_tensor([f.input_ids for f in features], torch.long)
all_input_mask = to_tensor([f.input_mask for f in features], torch.long)
all_segment_ids = to_tensor([f.segment_ids for f in features], torch.long)
ids_map = {}
for idx, guid in enumerate(guids):
ids_map[guid] = idx
all_ids = to_tensor([ids_map[guid] for guid in guids], torch.long)
return (all_input_ids, all_segment_ids, all_input_mask, all_ids, ids_map), len(examples)
def features(args, processor, set_type, tokenizer, test_batch_num=None):
# Prepare data loader
if set_type == "train":
examples = processor.get_train_examples(args.data_dir)
elif set_type == "dev":
examples = processor.get_dev_examples(args.data_dir)
else:
# should be from 1 to 5
if not test_batch_num:
raise ValueError("test batch number required")
examples = processor.get_test_examples(args.data_dir, test_batch_num)
cache_fname_base = '{0}_{1}_{2}'.format(
list(filter(None, args.bert_model.split('/'))).pop(),
str(args.max_seq_length),
str("alinger")
)
if set_type == "test":
cache_fname_base += "_6b{}".format(test_batch_num)
cached_features_file = os.path.join(
args.data_dir,
"{}_{}".format(set_type, cache_fname_base)
)
try:
with open(cached_features_file, "rb") as reader:
if set_type == "train":
features = pickle.load(reader)
else:
features, guids = pickle.load(reader)
except:
if set_type == "train":
features = convert_train_examples_to_features(
examples, args.max_seq_length, tokenizer
)
else:
features, guids = convert_eval_examples_to_features(
examples, args.max_seq_length, tokenizer
)
if args.local_rank == -1 or torch.distributed.get_rank() == 0:
logger.info(
" Saving %s features into cached file %s"
% (set_type, cached_features_file)
)
with open(cached_features_file, "wb") as writer:
if set_type == "train":
pickle.dump(features, writer)
else:
pickle.dump((features, guids), writer)
#
# feature set in case of *train* is composed of:
# - <question, +ve doc>, <question, -ve doc>
# all_* : -1 x 2 x max_seq_length
#
if set_type == "train":
all_input_ids = torch.cat([
to_tensor([f.input_ids for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
all_input_mask = torch.cat([
to_tensor([f.input_mask for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
all_segment_ids = torch.cat([
to_tensor([f.segment_ids for f in f_set], torch.long).unsqueeze(0)
for f_set in features
], dim=0)
return (all_input_ids, all_segment_ids, all_input_mask), len(examples)
else:
all_input_ids = to_tensor([f.input_ids for f in features], torch.long)
all_input_mask = to_tensor([f.input_mask for f in features], torch.long)
all_segment_ids = to_tensor([f.segment_ids for f in features], torch.long)
ids_map = {}
for idx, guid in enumerate(guids):
ids_map[guid] = idx
all_ids = to_tensor([ids_map[guid] for guid in guids], torch.long)
return (all_input_ids, all_segment_ids, all_input_mask, all_ids, ids_map), len(examples)
def to_tensor(array, dtype):
return torch.tensor(array, dtype=dtype)
def train(args, model, processor, tokenizer, device, n_gpu):
global_step = 0
nb_tr_steps = 0
tr_loss = 0
if args.local_rank in [-1, 0]:
tb_writer = SummaryWriter()
data, num_examples = features(args, processor, "train", tokenizer)
data = TensorDataset(*data)
if args.local_rank == -1:
sampler = RandomSampler(data)
else:
sampler = DistributedSampler(data)
data_loader = DataLoader(data, sampler=sampler, batch_size=args.train_batch_size)
step_size = args.gradient_accumulation_steps * args.num_train_epochs
num_train_optimization_steps = len(data_loader) // step_size
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{
'params': [
p for n, p in param_optimizer
if not any(nd in n for nd in no_decay)
],
'weight_decay': 0.01
},
{
'params': [
p for n, p in param_optimizer
if any(nd in n for nd in no_decay)
],
'weight_decay': 0.0
}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from "
"https://www.github.com/nvidia/apex to use "
"distributed and fp16 training."
)
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(optimizer, static_loss_scale=args.loss_scale)
warmup_linear = WarmupLinearSchedule(warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", num_examples)
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
model.train()
loss_fct = MarginRankingLoss(margin=args.margin)
ckpt_num = 0
eval_results_history = []
best = 0.
best_props = {}
eval_result = None
no_improvement = 0
t = time.time()
try:
for num_epoch in trange(int(args.num_train_epochs), desc="Epoch"):
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
if no_improvement > args.tolerance:
logger.info("No improvement in last %d evaluations, early stopping")
logger.info("epoch: {} | nb_tr_steps: {} | global_step: {} | tr_loss: {}".format(
num_epoch, nb_tr_steps, global_step, tr_loss))
for step, batch in enumerate(tqdm(data_loader, desc="Iteration")):
print(nb_tr_steps)
batch = tuple(t.to(device) for t in batch)
input_ids, segment_ids, mask_ids = batch
# <question, +ve doc> pairs
input_ids_qp, segment_ids_qp, input_mask_qp = \
input_ids[:, 0, :], segment_ids[:, 0, :], mask_ids[:, 0, :]
# <question, -ve doc> pairs
input_ids_qn, segment_ids_qn, input_mask_qn = \
input_ids[:, 1, :], segment_ids[:, 1, :], mask_ids[:, 1, :]
pos_scores = model(input_ids_qp, segment_ids_qp, input_mask_qp)
neg_scores = model(input_ids_qn, segment_ids_qn, input_mask_qn)
# y all 1s to indicate positive should be higher
y = torch.ones(len(pos_scores)).float().to(device)
loss = loss_fct(pos_scores, neg_scores, y)
if nb_tr_steps % 10 == 0 and nb_tr_steps != 0:
logger.info("+ve scores : %r" % pos_scores)
logger.info("-ve scores : %r" % neg_scores)
logger.info("Train step loss : %0.5f" % loss.item())
if global_step > 0:
logger.info("Train total loss : %0.5f" % (tr_loss/global_step))
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles
# this automatically
lr_this_step = args.learning_rate * warmup_linear.get_lr(
global_step, args.warmup_proportion
)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
global_step += 1
if args.local_rank in [-1, 0]:
tb_writer.add_scalar('lr', optimizer.get_lr()[0], global_step)
tb_writer.add_scalar('loss', loss.item(), global_step)
if nb_tr_steps % config.eval_every_step == 0 and nb_tr_steps != 0:
eval_result = eval(
args, model, processor,
tokenizer, device,
tr_loss, global_step
)
if eval_result["f1"] >= best:
save(
model, "%s_%0.3f_%0.3f_%0.3f" % (
args.model_name,
eval_result["precision"],
eval_result["recall"],
eval_result["f1"]
) ,
args, tokenizer, ckpt_num
)
best = eval_result["f1"]
best_props["num_epoch"] = num_epoch
best_props["nb_tr_steps"] = nb_tr_steps
best_props["tr_loss"] = tr_loss/global_step
best_props["ckpt_num"] = ckpt_num
best_props["global_step"] = global_step
best_props["eval_result"] = eval_result
with open(os.path.join(config.output_dir, "best.json"), "w") as wf:
json.dump(best_props, wf, indent=2)
# make predictions with best model
for i in range(1, 6):
predict(args, model, processor, tokenizer, device, i)
no_improvement = 0
else:
no_improvement += 1
ckpt_num += 1
eval_results_history.append((ckpt_num, eval_result))
except KeyboardInterrupt:
logger.info("Training interrupted!")
if eval_result is not None:
save(
model, "%s_%0.3f_%0.3f_%0.3f_interrupted" % (
args.model_name,
eval_result["precision"],
eval_result["recall"],
eval_result["f1"]
) ,
args, tokenizer, ckpt_num
)
t = time.time() - t
logger.info("Training took %0.3f seconds" % t)
loss = tr_loss / global_step
logger.info("Final training loss %0.5f" % loss)
logger.info("Best F1-score on eval set : %0.3f" % best)
logger.info("***** Eval best props *****")
for key in sorted(best_props.keys()):
if key != "eval_result":
logger.info(" %s = %s", key, str(best_props[key]))
else:
for eval_key in sorted(best_props[key].keys()):
logger.info(" %s = %s", eval_key, str(best_props[key][eval_key]))
with open(os.path.join(config.output_dir, "eval_results_history.pkl"), "wb") as wf:
pickle.dump(eval_results_history, wf)
def eval(args, model, processor, tokenizer, device, tr_loss=None, global_step=None):
data, num_examples = features(args, processor, "dev", tokenizer)
all_input_ids, all_segment_ids, all_input_mask, all_ids, ids_map = data
data = TensorDataset(all_input_ids, all_segment_ids, all_input_mask, all_ids)
if args.local_rank == -1:
sampler = RandomSampler(data)
else:
sampler = DistributedSampler(data)
data_loader = DataLoader(data, sampler=sampler, batch_size=args.eval_batch_size)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", num_examples)
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
preds = []
preds_ids = []
with open(os.path.join(config.data_dir, "dev_id2rels.pkl"), "rb") as rf:
id2true = pickle.load(rf)
for batch in tqdm(data_loader, desc="Evaluating"):
input_ids, segment_ids, mask_ids, ids = batch
input_ids = input_ids.to(device)
segment_ids = segment_ids.to(device)
mask_ids = mask_ids.to(device)
with torch.no_grad():
scores = model(input_ids, segment_ids, mask_ids)
if len(preds) == 0:
preds.append(scores.detach().cpu().numpy())
preds_ids.append(ids.numpy())
else:
preds[0] = np.append(preds[0], scores.detach().cpu().numpy(), axis=0)
preds_ids[0] = np.append(preds_ids[0], ids.numpy(), axis=0)
preds = preds[0]
preds_ids = preds_ids[0]
id2preds = {}
rev_idsmap = {v:k for k, v in ids_map.items()}
for i, j in zip(preds, preds_ids):
question_id, doc_id = rev_idsmap[j].split("_")
if i <= 0:
continue
if question_id in id2preds:
id2preds[question_id].append(doc_id)
else:
id2preds[question_id] = [doc_id]
# take top-10 only
id2preds = {k:v[:10] for k, v in id2preds.items()}
all_ps = []
all_rs = []
all_f1s = []
for qid in id2preds:
if not qid in id2true:
continue
y_pred = set([i for i in id2preds[qid]])
y_true = set(id2true[qid])
common = y_pred.intersection(y_true)
diff = y_pred - y_true
tps = len(common)
fps = len(diff)
all_tps = len(y_true)
if (tps + fps) == 0:
p = 0
else:
p = tps / (tps + fps)
all_ps.append(p)
if all_tps == 0:
r = 0
else:
r = tps / all_tps
all_rs.append(r)
if (p + r) == 0:
f1 = 0.
else:
f1 = 2 * ((p * r) / (p + r))
all_f1s.append(f1)
result = {}
result["precision"] = sum(all_ps) / len(all_ps)
result["recall"] = sum(all_rs) / len(all_rs)
result["f1"] = sum(all_f1s) / len(all_f1s)
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
with open(output_eval_file, "w") as writer:
logger.info("***** Eval results *****")
for key in sorted(result.keys()):
logger.info(" %s = %s", key, str(result[key]))
writer.write("%s = %s\n" % (key, str(result[key])))
return result
def predict(args, model, processor, tokenizer, device, test_batch_num):
data, num_examples = features(args, processor, "test", tokenizer, test_batch_num)
all_input_ids, all_segment_ids, all_input_mask, all_ids, ids_map = data
data = TensorDataset(all_input_ids, all_segment_ids, all_input_mask, all_ids)
if args.local_rank == -1:
sampler = RandomSampler(data)
else:
sampler = DistributedSampler(data)
data_loader = DataLoader(data, sampler=sampler, batch_size=args.eval_batch_size)
logger.info("***** Running predictions *****")
logger.info(" Num examples = %d", num_examples)
logger.info(" Batch size = %d", args.eval_batch_size)
model.eval()
preds = []
preds_ids = []
for batch in tqdm(data_loader, desc="Evaluating"):
input_ids, segment_ids, mask_ids, ids = batch
input_ids = input_ids.to(device)
segment_ids = segment_ids.to(device)
mask_ids = mask_ids.to(device)
with torch.no_grad():
scores = model(input_ids, segment_ids, mask_ids)
if len(preds) == 0:
preds.append(scores.detach().cpu().numpy())
preds_ids.append(ids.numpy())
else:
preds[0] = np.append(preds[0], scores.detach().cpu().numpy(), axis=0)
preds_ids[0] = np.append(preds_ids[0], ids.numpy(), axis=0)
preds = preds[0]
preds_ids = preds_ids[0]
id2preds = {}
rev_idsmap = {v:k for k, v in ids_map.items()}
for i, j in zip(preds, preds_ids):
question_id, doc_id = rev_idsmap[j].split("_")
doc_id = "http://www.ncbi.nlm.nih.gov/pubmed/" + doc_id
if i <= 0:
continue
if question_id in id2preds:
id2preds[question_id].append(doc_id)
else:
id2preds[question_id] = [doc_id]
# open template file and write predictions
batch_name = "6b{}".format(test_batch_num)
test_qas = read_bioasq_json_file(
os.path.join(config.data_dir, "test_template_{}.json".format(batch_name))
)
for idx, qas in enumerate(test_qas):
if qas["id"] in id2preds:
qas["documents"] = id2preds[qas["id"]]
test_qas = {
"questions": test_qas
}
wf = open(
os.path.join(config.output_dir, "test_predictions_{}.json".format(batch_name)),
"w",
encoding="utf-8",
errors="ignore"
)
json.dump(test_qas, wf, indent=2)
wf.close()
def save(model, model_name, args, tokenizer, ckpt_num):
# If we save using the predefined names, we can load using `from_pretrained`
output_model_file = os.path.join(
args.output_dir, model_name + "_" + str(ckpt_num)
)
output_config_file = os.path.join(
args.output_dir, model_name + "_" + str(ckpt_num) + "_" + "config.json"
)
torch.save(model.state_dict(), output_model_file)
model.bert.config.to_json_file(output_config_file)
tokenizer.save_vocabulary(args.output_dir)
def main():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--model_name",
default=None,
type=str,
required=True,
help="The name of the model (e.g. vanBioBERT).")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
## Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_predict",
action='store_true',
help="Whether to run predictions on the test set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--use_knrm",
action='store_true',
help="Use K-NRM instead of BERT [CLS] for retrieval.")
parser.add_argument("--tolerance",
default=3,
type=int,
help="Number of no improvement evaluation cycles to stop training.")
parser.add_argument("--margin",
default=1.0,
type=float,
help="Margin to use in MarginRankingLoss.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument('--overwrite_output_dir',
action='store_true',
help="Overwrite the content of the output directory")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
parser.add_argument('--server_ip', type=str, default='', help="Can be used for distant debugging.")
parser.add_argument('--server_port', type=str, default='', help="Can be used for distant debugging.")
args = parser.parse_args()
if args.server_ip and args.server_port:
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
import ptvsd
print("Waiting for debugger attach")
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)
ptvsd.wait_for_attach()
if args.local_rank == -1 or args.no_cuda:
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
args.device = torch.device("cuda:0")
n_gpu = 1
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt = '%m/%d/%Y %H:%M:%S',
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN)
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval and not args.do_predict:
raise ValueError("At least one of `do_train`, `do_eval` or `do_predict` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir:
raise ValueError("Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]:
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name]()
if args.local_rank not in [-1, 0]:
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab
tokenizer = BertTokenizer.from_pretrained(
args.bert_model,
do_lower_case=args.do_lower_case
)
model = BertKnrm.from_pretrained(args.bert_model, use_knrm=args.use_knrm,
last_layer_only=False, N=12, method="selfattn")
if args.local_rank == 0:
torch.distributed.barrier()
if args.fp16:
model.half()
model.to(device)
if args.use_knrm:
model.to_device(device)
if args.local_rank != -1:
model = torch.nn.parallel.DistributedDataParallel(model,
device_ids=[args.local_rank],
output_device=args.local_rank,
find_unused_parameters=True)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
if args.do_train:
try:
train(args, model, processor, tokenizer, device, n_gpu)
except KeyboardInterrupt:
sys.exit(1)
### Saving best-practices: if you use defaults names for the model, you
### can reload it using from_pretrained()
### Example:
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
save(model, args.model_name +"_end", args, tokenizer, "_end")
else:
tokenizer = BertTokenizer.from_pretrained(
args.bert_model,
do_lower_case=args.do_lower_case
)
model = BertKnrm.from_pretrained(args.bert_model)
model.to(device)
### Evaluation
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
eval(args, model, processor, tokenizer, device)
if args.do_predict and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
for i in range(1, 6):
predict(args, model, processor, tokenizer, device, i)
if __name__ == "__main__":
main()
"""
export BIO_BERT=/raid/data/saam01/pretrained/bert/biobert_v1.0_pubmed_pmc
export BIO_BERT=/raid/data/saam01/bioasq6b_phaseA/output/pubmed_pmc_470k
export DATA_DIR=/raid/data/saam01/bioasq6b_phaseA/data
export OUT_DIR=/raid/data/saam01/bioasq6b_phaseA/output
export BIO_BERT=/home/mlt/saad/projects/bioasq-task7b/tmp/bert_knrm/output/biobert_squad_tuned
export DATA_DIR=/home/mlt/saad/projects/bioasq-task7b/tmp/bert_knrm/data
export OUT_DIR=/home/mlt/saad/projects/bioasq-task7b/tmp/bert_knrm/output/biobert_squad_tuned
# train
python train_retrieval.py \
--bert_model $BIO_BERT \
--data_dir $DATA_DIR \
--output_dir $OUT_DIR \
--overwrite_output_dir \
--task_name retrieval \
--model_name vanBioBERT \
--max_seq_length 256 \
--learning_rate 2e-5 \
--train_batch_size 6 \
--num_train_epochs 1.0 \
--margin 1.0 \
--use_knrm \
--tolerance 2 \
--do_train \
--eval_batch_size 128 \
--warmup_proportion 0.1 \
--seed 2019
6B1 AP Recall F MAP GMAP
=============================================
* 0.4034 0.6613 0.4237 0.2340 0.0160 (+)
** 0.3535 0.6617 0.3964 0.2344 0.0152
*** 0.3876 0.6591 0.4119 0.2385 0.0164
^ - - - - -
6B2 AP Recall F MAP GMAP
=============================================
* 0.4328 0.6664 0.4226 0.2411 0.0332
** 0.3825 0.6628 0.3931 0.2250 0.0292
*** 0.4561 0.6460 0.4317 0.2417 0.0286
^ 0.5091 0.5530 0.4493 0.2070 0.0508 (+)
6B3 AP Recall F MAP GMAP
=============================================
* 0.4341 0.6110 0.4394 0.3564 0.0152
** 0.4422 0.6121 0.4456 0.3553 0.0159
*** 0.4174 0.6156 0.4250 0.3666 0.0153
^ 0.5926 0.5169 0.5000 0.2189 0.0563 (+)
6B4 AP Recall F MAP GMAP
=============================================
* 0.3211 0.6540 0.3739 0.2187 0.0086
** 0.3203 0.6527 0.3707 0.2268 0.0091
*** 0.3014 0.6507 0.3493 0.2214 0.0085
^ 0.4245 0.5180 0.4052 0.1615 0.0150 (+)
6B5 AP Recall F MAP GMAP
=============================================
* 0.3977 0.6321 0.3947 0.2216 0.0195
** 0.4219 0.6314 0.4021 0.2578 0.0208 (+)
*** 0.3985 0.6399 0.3875 0.2628 0.0213
^ 0.2702 0.3591 0.2552 0.1781 0.0077
Average of 6B2 - 6B5 (we exclude 6B1 where AUEB-NLP-5 did not
submitted to make comparison fair).
AVG AP Recall F MAP GMAP
=============================================
* 0.3964 0.6408 0.4076 0.2594 0.0191
** 0.3917 0.6397 0.4028 0.2244 0.0187
*** 0.3933 0.6380 0.3983 0.2217 0.0184
^ 0.4491 0.4867 0.4016 0.1250 0.0324
---------------------------------------------
W ^ * * * ^
---------------------------------------------
OW *
Where,
* = vanilla BioBERT intialized with SQuAD 1.1 fine-tuning
** = vanilla BioBERT intialized with SQuAD 2.0 fine-tuning
*** = vanilla BioBERT
^ = AUEB-NLP-5
(+) = Best performing system in terms of F measure
W = Winner per metric
OW = Overall winning system based on number of times it won per metric
Layer-wise performance evaluation on test batch 3 using **
----------------------------------------------------------
L# AP Recall F MAP GMAP
============================================
L05 - 0.3637 0.2341 0.2322 0.1449 0.0010
L06 - 0.3809 0.5946 0.3910 0.3207 0.0142
L07 - 0.3142 0.6125 0.3585 0.2779 0.0122
L08 - 0.3267 0.6077 0.3675 0.2972 0.0132
L09 - 0.3114 0.6075 0.3494 0.2911 0.0126
L10 - 0.3977 0.6079 0.4076 0.3454 0.0150
L11 - 0.4451 0.6080 0.4454 0.3505 0.0157
L12 - 0.4422 0.6121 0.4456 0.3530 0.0164
"""