-
Notifications
You must be signed in to change notification settings - Fork 4
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Sumon Biswas
authored
Dec 9, 2022
1 parent
a093f4d
commit f70c12d
Showing
68 changed files
with
115,622 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,26 @@ | ||
,Partition_ID,SAT_count,UNSAT_count,UNK_count,h_attempt,h_success,ST_compression,H_compression,SV-time,HV-Time,Total-Time | ||
0,210,47,157,6,13,7,0.791047619,0.005333333,12.46009048,4.577452381,17.167 | ||
4,74,20,45,9,14,5,0.906217568,0.002943243,33.93127027,14.51856757,48.74918919 | ||
5,124,84,35,5,10,5,0.827946774,0.002845161,23.55504839,5.977879032,29.71540323 | ||
6,30,13,5,12,16,4,0.90015,0.0297,65.263,48.2012,120.9156667 | ||
7,27,11,3,13,16,3,0.86707037,0.015225926,78.56551852,54.18792593,134.2951852 | ||
8,117,47,56,14,17,3,0.712820513,0.007179487,19.66211966,12.43119658,32.22102564 | ||
9,44,0,31,13,19,6,0.748,0.036,52.08634091,31.17302273,84.47340909 | ||
10,402,182,220,0,3,3,0.346200746,0.000226119,8.664828358,0.204554726,8.981094527 | ||
11,4811,1294,3517,0,3,3,0.259099418,0,0.62212513,0.015874039,0.74860528 | ||
1,164,34,128,2,11,9,0.416094512,0.004645122,19.3667622,3.5445,23.05829268 | ||
2,18,0,0,18,18,0,0.185644444,0.031177778,100.1774444,100.2556111,200.8777778 | ||
3,53,1,36,16,18,2,0.402786792,0.010241509,37.08790566,31.99898113,69.34264151 | ||
,,,,,,,,,,, | ||
12,216,9,193,14,17,3,0.784814815,0.006111111,9.694439815,7.051875,16.88675926 | ||
16,75,8,55,12,14,2,0.88846,0.006996,31.0968,17.94189333,49.5652 | ||
17,129,34,86,9,13,4,0.813632558,0.003494574,18.94053488,8.731310078,27.92116279 | ||
18,41,5,22,14,16,2,0.899390244,0.022939024,44.69692683,36.2724878,91.49804878 | ||
19,37,3,18,16,17,1,0.861727027,0.015513514,51.45454054,43.95527027,97.87513514 | ||
20,177,28,133,16,17,1,0.710282486,0.005649718,11.60489266,9.084542373,20.83762712 | ||
21,66,0,53,13,17,4,0.747636364,0.021333333,32.74569697,20.89736364,55.24939394 | ||
22,639,218,418,3,6,3,0.352230516,0.000142254,4.983474178,0.569051643,5.674757433 | ||
23,3991,483,3508,0,2,2,0.261200927,0,0.777612378,0.008530193,0.902861438 | ||
13,216,19,192,5,15,10,0.416235648,0.00396713,13.70964815,3.6965,17.55435185 | ||
14,31,0,13,18,18,0,0.176245161,0.011806452,58.18019355,58.14322581,116.8190323 | ||
15,123,0,107,16,17,1,0.432833333,0.005121951,16.09786179,13.06808943,29.4303252 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,317 @@ | ||
#!/usr/bin/env python3 | ||
# -*- coding: utf-8 -*- | ||
import sys | ||
sys.path.append('../../') | ||
|
||
from random import shuffle | ||
from z3 import * | ||
from utils.input_partition import * | ||
from utils.verif_utils import * | ||
from utils.prune import * | ||
from importlib import import_module | ||
|
||
# In[] | ||
|
||
df, X_train, y_train, X_test, y_test = load_adult_ac1() | ||
X = np.r_[X_train, X_test] | ||
single_input = X_test[0].reshape(1, 13) | ||
#print_metadata(df) | ||
|
||
# In[] | ||
model_dir = '../../models/adult/' | ||
result_dir = './res/age-' | ||
PARTITION_THRESHOLD = 6 | ||
|
||
SOFT_TIMEOUT = 100 | ||
HARD_TIMEOUT = 1*60*60 | ||
HEURISTIC_PRUNE_THRESHOLD = 20 | ||
|
||
# In[] | ||
## Domain | ||
default_range = [0, 1] | ||
range_dict = {} | ||
range_dict['age'] = [10, 100] | ||
range_dict['workclass'] = [0, 6] | ||
range_dict['education'] = [0, 15] | ||
range_dict['education-num'] = [1, 16] | ||
range_dict['marital-status'] = [0, 6] | ||
range_dict['occupation'] = [0, 13] | ||
range_dict['relationship'] = [0, 5] | ||
range_dict['race'] = [0, 4] | ||
range_dict['sex'] = [0, 1] | ||
range_dict['capital-gain'] = [0, 19] | ||
range_dict['capital-loss'] = [0, 19] | ||
range_dict['hours-per-week'] = [1, 100] | ||
range_dict['native-country'] = [0, 40] | ||
|
||
A = range_dict.keys() | ||
PA = ['race'] | ||
|
||
RA = ['age'] | ||
RA_threshold = 5 | ||
|
||
sim_size = 1 * 1000 | ||
|
||
p_dict = partition(range_dict, PARTITION_THRESHOLD) | ||
p_list = partitioned_ranges(A, PA, p_dict, range_dict) | ||
print('Number of partitions: ', len(p_list)) | ||
shuffle(p_list) | ||
|
||
# In[] | ||
|
||
model_files = os.listdir(model_dir) | ||
for model_file in model_files: | ||
if not model_file.endswith('.h5'): | ||
continue; | ||
print('================== STARTING MODEL ' + model_file) | ||
model_name = model_file.split('.')[0] | ||
if model_name == '': | ||
continue | ||
|
||
model_funcs = 'utils.' + model_name + '-Model-Functions' | ||
mod = import_module(model_funcs) | ||
layer_net = getattr(mod, 'layer_net') | ||
net = getattr(mod, 'net') | ||
z3_net = getattr(mod, 'z3_net') | ||
|
||
w = [] | ||
b = [] | ||
|
||
model = load_model(model_dir + model_file) | ||
|
||
for i in range(len(model.layers)): | ||
w.append(model.layers[i].get_weights()[0]) | ||
b.append(model.layers[i].get_weights()[1]) | ||
|
||
print('###################') | ||
partition_id = 0 | ||
sat_count = 0 | ||
unsat_count = 0 | ||
unk_count = 0 | ||
cumulative_time = 0 | ||
|
||
for p in p_list: | ||
heuristic_attempted = 0 | ||
result = [] | ||
start_time = time.time() | ||
|
||
partition_id += 1 | ||
simulation_size = 1*1000 | ||
|
||
|
||
# In[] | ||
# sd = s | ||
neuron_bounds, candidates, s_candidates, b_deads, s_deads, st_deads, pos_prob, sim_X_df = \ | ||
sound_prune(df, w, b, simulation_size, layer_net, p) | ||
|
||
b_compression = compression_ratio(b_deads) | ||
s_compression = compression_ratio(s_deads) | ||
st_compression = compression_ratio(st_deads) | ||
|
||
pr_w, pr_b = prune_neurons(w, b, st_deads) | ||
|
||
|
||
# In[] | ||
# Create properties | ||
in_props = [] | ||
out_props = [] | ||
|
||
x = np.array([Int('x%s' % i) for i in range(13)]) | ||
x_ = np.array([Int('x_%s' % i) for i in range(13)]) | ||
|
||
y = z3_net(x, pr_w, pr_b) # y is an array of size 1 | ||
y_ = z3_net(x_, pr_w, pr_b) | ||
|
||
# Basic fairness property - must include | ||
for attr in A: | ||
if(attr in PA): | ||
in_props.extend(in_const_adult(df, x, attr, 'neq', x_)) | ||
elif(attr in RA): | ||
in_props.extend(in_const_diff_adult(df, x, x_, attr, RA_threshold)) | ||
else: | ||
in_props.extend(in_const_adult(df, x, attr, 'eq', x_)) | ||
|
||
in_props.extend(in_const_domain_adult(df, x, x_, p, PA)) | ||
|
||
# In[] | ||
s = Solver() | ||
#s.reset() | ||
|
||
if(len(sys.argv) > 1): | ||
s.set("timeout", int(sys.argv[1]) * 1000) # X seconds | ||
else: | ||
s.set("timeout", SOFT_TIMEOUT * 1000) | ||
|
||
|
||
for i in in_props: | ||
s.add(i) | ||
|
||
s.add(Or(And(y[0] < 0, y_[0] > 0), And(y[0] > 0, y_[0] < 0))) | ||
|
||
print('Verifying ...') | ||
res = s.check() | ||
|
||
print(res) | ||
if res == sat: | ||
m = s.model() | ||
inp1, inp2 = parse_z3Model(m) | ||
|
||
sv_time = s.statistics().time | ||
s_end_time = time.time() | ||
s_time = compute_time(start_time, s_end_time) | ||
hv_time = 0 | ||
# In[] | ||
h_compression = 0 | ||
t_compression = st_compression | ||
h_success = 0 | ||
if res == unknown: | ||
heuristic_attempted = 1 | ||
|
||
h_deads, deads = heuristic_prune(neuron_bounds, candidates, | ||
s_candidates, st_deads, pos_prob, HEURISTIC_PRUNE_THRESHOLD, w, b) | ||
|
||
del pr_w | ||
del pr_b | ||
|
||
pr_w, pr_b = prune_neurons(w, b, deads) | ||
h_compression = compression_ratio(h_deads) | ||
print(round(h_compression*100, 2), '% HEURISTIC PRUNING') | ||
t_compression = compression_ratio(deads) | ||
print(round(t_compression*100, 2), '% TOTAL PRUNING') | ||
|
||
y = z3_net(x, pr_w, pr_b) # y is an array of size 1 | ||
y_ = z3_net(x_, pr_w, pr_b) | ||
|
||
s = Solver() | ||
|
||
if(len(sys.argv) > 1): | ||
s.set("timeout", int(sys.argv[1]) * 1000) # X seconds | ||
else: | ||
s.set("timeout", SOFT_TIMEOUT * 1000) | ||
|
||
for i in in_props: | ||
s.add(i) | ||
|
||
s.add(Or(And(y[0] < 0, y_[0] > 0), And(y[0] > 0, y_[0] < 0))) | ||
print('Verifying ...') | ||
res = s.check() | ||
|
||
print(res) | ||
if res == sat: | ||
m = s.model() | ||
inp1, inp2 = parse_z3Model(m) | ||
|
||
if res != unknown: | ||
h_success = 1 | ||
hv_time = s.statistics().time | ||
|
||
# In[] | ||
h_time = compute_time(s_end_time, time.time()) | ||
total_time = compute_time(start_time, time.time()) | ||
|
||
cumulative_time += total_time | ||
|
||
# In[] | ||
print('V time: ', s.statistics().time) | ||
file = result_dir + model_name + '.csv' | ||
|
||
# In[] | ||
c_check_correct = 0 | ||
accurate = 0 | ||
d1 = '' | ||
d2 = '' | ||
if res == sat: | ||
sat_count += 1 | ||
d1 = np.asarray(inp1, dtype=np.float32) | ||
d2 = np.asarray(inp2, dtype=np.float32) | ||
print(inp1) | ||
print(inp2) | ||
res1 = net(d1, pr_w, pr_b) | ||
res2 = net(d2, pr_w, pr_b) | ||
print(res1, res2) | ||
pred1 = sigmoid(res1) | ||
pred2 = sigmoid(res2) | ||
class_1 = pred1 > 0.5 | ||
class_2 = pred2 > 0.5 | ||
|
||
res1_orig = net(d1, w, b) | ||
res2_orig = net(d2, w, b) | ||
print(res1_orig, res2_orig) | ||
pred1_orig = sigmoid(res1_orig) | ||
pred2_orig = sigmoid(res2_orig) | ||
class_1_orig = pred1_orig > 0.5 | ||
class_2_orig = pred2_orig > 0.5 | ||
|
||
if class_1_orig != class_2_orig: | ||
accurate = 1 | ||
if class_1 == class_1_orig and class_2 == class_2_orig: | ||
c_check_correct = 1 | ||
elif res == unsat: | ||
unsat_count += 1 | ||
else: | ||
unk_count +=1 | ||
|
||
|
||
d = X_test[0] | ||
res1 = net(d, pr_w, pr_b) | ||
pred1 = sigmoid(res1) | ||
class_1 = pred1 > 0.5 | ||
|
||
res1_orig = net(d, w, b) | ||
pred1_orig = sigmoid(res1_orig) | ||
class_1_orig = pred1_orig > 0.5 | ||
|
||
sim_X = sim_X_df.to_numpy() | ||
sim_y_orig = get_y_pred(net, w, b, sim_X) | ||
sim_y = get_y_pred(net, pr_w, pr_b, sim_X) | ||
|
||
|
||
orig_acc = accuracy_score(y_test, get_y_pred(net, w, b, X_test)) | ||
pruned_acc = accuracy_score(sim_y_orig, sim_y) | ||
|
||
# In[] | ||
res_cols = ['Partition_ID', 'Verification', 'SAT_count', 'UNSAT_count', 'UNK_count', 'h_attempt', 'h_success', \ | ||
'B_compression', 'S_compression', 'ST_compression', 'H_compression', 'T_compression', 'SV-time', 'S-time', 'HV-Time', 'H-Time', 'Total-Time', 'C-check',\ | ||
'V-accurate', 'Original-acc', 'Pruned-acc', 'Acc-dec', 'C1', 'C2'] | ||
|
||
result.append(partition_id) | ||
result.append(str(res)) | ||
result.append(sat_count) | ||
result.append(unsat_count) | ||
result.append(unk_count) | ||
result.append(heuristic_attempted) | ||
result.append(h_success) | ||
result.append(round(b_compression, 4)) | ||
result.append(round(s_compression, 4)) | ||
result.append(round(st_compression, 4)) | ||
result.append(round(h_compression, 4)) | ||
result.append(round(t_compression, 4)) | ||
result.append(sv_time) | ||
result.append(s_time) | ||
result.append(hv_time) | ||
result.append(h_time) | ||
result.append(total_time) | ||
result.append(c_check_correct) | ||
result.append(accurate) | ||
result.append(round(orig_acc, 4)) | ||
result.append(round(pruned_acc, 4)) | ||
result.append('-') | ||
#result.append(round(orig_acc - pruned_acc, 4)) | ||
result.append(d1) | ||
result.append(d2) | ||
|
||
|
||
import csv | ||
file_exists = os.path.isfile(file) | ||
with open(file, "a", newline='') as fp: | ||
if not file_exists: | ||
wr = csv.writer(fp, dialect='excel') | ||
wr.writerow(res_cols) | ||
|
||
wr = csv.writer(fp) | ||
wr.writerow(result) | ||
print('******************') | ||
|
||
if(cumulative_time > HARD_TIMEOUT): | ||
print('================== COMPLETED MODEL ' + model_file) | ||
break |
Oops, something went wrong.