-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathscheduler.py
47 lines (35 loc) · 1.4 KB
/
scheduler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import torch
from torch.optim import Adam
from torch.optim.lr_scheduler import LambdaLR
from torchvision.models import resnet18
class RepeatedMultiStepLR(LambdaLR):
def __init__(self, optimizer, milestones=(400, 600, 800), gamma=0.1, interval=1000, **kwargs):
self.milestones = milestones
self.interval = interval
self.gamma = gamma
super().__init__(optimizer, self._lambda, **kwargs)
def _lambda(self, epoch):
factor = 1
for milestone in self.milestones:
if epoch % self.interval >= milestone:
factor *= self.gamma
return factor
def main():
resnet = resnet18()
optimizer1 = Adam(resnet.parameters(), lr=0.1)
optimizer2 = Adam(resnet.parameters(), lr=0.1)
s1 = torch.optim.lr_scheduler.MultiStepLR(optimizer1, milestones=[400, 600, 800], gamma=0.1)
s2 = RepeatedMultiStepLR(optimizer2, milestones=[400, 600, 800])
s1_history = []
s2_history = []
for i in range(2000):
# print("Epoch {:04d}: {:.6f} / {:.6f}".format(i, s1.get_last_lr()[0], s2.get_last_lr()[0]))
s1_history.append(s1.get_last_lr()[0])
s2_history.append(s2.get_last_lr()[0])
s1.step()
s2.step()
assert (s1_history[:1000] == s2_history[:1000])
assert (s1_history[:1000] == s2_history[1000:])
print("Manual test passed!")
if __name__ == "__main__": # manual unit test
main()