-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
139 lines (123 loc) · 4.23 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import os
import random
import functools
from collections import OrderedDict
import numpy as np
import torch
def get_accuracy(logits, targets):
"""Compute the accuracy (after adaptation) of MAML on the test/query points
Parameters
----------
logits : `torch.FloatTensor` instance
Outputs/logits of the model on the query points. This tensor has shape
`(num_examples, num_classes)`.
targets : `torch.LongTensor` instance
A tensor containing the targets of the query points. This tensor has
shape `(num_examples,)`.
Returns
-------
accuracy : `torch.FloatTensor` instance
Mean accuracy on the query points
"""
_, predictions = torch.max(logits, dim=-1)
return torch.mean(predictions.eq(targets).float())
def apply_grad(model, grad):
'''
assign gradient to model(nn.Module) instance. return the norm of gradient
'''
grad_norm = 0
for p, g in zip(model.parameters(), grad):
if p.grad is None:
p.grad = g
else:
p.grad += g
grad_norm += torch.sum(g**2)
grad_norm = grad_norm ** (1/2)
return grad_norm.item()
def mix_grad(grad_list, weight_list):
'''
calc weighted average of gradient
'''
mixed_grad = []
for g_list in zip(*grad_list):
g_list = torch.stack([weight_list[i] * g_list[i] for i in range(len(weight_list))])
mixed_grad.append(torch.sum(g_list, dim=0))
return mixed_grad
def grad_to_cos(grad_list):
'''
generate cosine similarity from list of gradient
'''
cos = 0.
for g_list in zip(*grad_list):
g_list = torch.stack(g_list)
g_list = g_list.reshape(g_list.shape[0], -1) # (n, p)
g_sum = torch.sum(g_list,dim=0) # (p)
cos += torch.sum(g_list * g_sum.unsqueeze(0), dim=1) # (n)
cos = cos/torch.sum(cos)
return cos
def loss_to_ent(loss_list, lamb=1.0, beta=1.0):
'''
generate entropy weight from list of loss (uncertainty in loss function)
'''
loss_list = np.array(loss_list)
ent = 1./(lamb + beta * loss_list)
return ent
def set_seed(seed):
# for reproducibility.
# note that pytorch is not completely reproducible
# https://pytorch.org/docs/stable/notes/randomness.html
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.initial_seed() # dataloader multi processing
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
return None
def set_gpu(x):
x = [str(e) for e in x]
os.environ['CUDA_VISIBLE_DEVICES'] = ','.join(x)
print('using gpu:', ','.join(x))
def check_dir(args):
# save path
path = os.path.join(args.result_path, args.alg)
if not os.path.exists(path):
os.makedirs(path)
return None
# https://github.com/sehkmg/tsvprint/blob/master/utils.py
def dict2tsv(res, file_name):
if not os.path.exists(file_name):
with open(file_name, 'a') as f:
f.write('\t'.join(list(res.keys())))
f.write('\n')
with open(file_name, 'a') as f:
f.write('\t'.join([str(r) for r in list(res.values())]))
f.write('\n')
class BestTracker:
'''Decorator for train function.
Get ordered dict result (res),
track best accuracy (self.best_acc) & best epoch (self.best_epoch) and
append them to ordered dict result (res).
Also, save the best result to file (best.txt).
Return ordered dict result (res).'''
def __init__(self, func):
functools.update_wrapper(self, func)
self.func = func
self.best_epoch = 0
self.best_valid_acc = 0
self.best_test_acc = 0
def __call__(self, *args, **kwargs):
res = self.func(*args, **kwargs)
if res['valid_acc'] > self.best_valid_acc:
self.best_epoch = res['epoch']
self.best_valid_acc = res['valid_acc']
self.best_test_acc = res['test_acc']
is_best = True
else:
is_best = False
res['best_epoch'] = self.best_epoch
res['best_valid_acc'] = self.best_valid_acc
res['best_test_acc'] = self.best_test_acc
return res, is_best