forked from VeriSilicon/tflite-vx-delegate
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.h
93 lines (78 loc) · 3.41 KB
/
utils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
/****************************************************************************
*
* Copyright (c) 2021 Vivante Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
*****************************************************************************/
#ifndef TENSORFLOW_LITE_DELEGATES_VX_DELEGAGE_UTILS_H_
#define TENSORFLOW_LITE_DELEGATES_VX_DELEGAGE_UTILS_H_
#include <cstdint>
#include <vector>
#include <limits>
#include <cmath>
#include "delegate_main.h"
namespace vx {
namespace delegate {
namespace utils {
// transpose channel_dim while doing transpose operation.
int32_t TransposeChannelDim(const std::vector<uint32_t>& perm,
int32_t channel_dim);
// Convert the perm in TfLite to the perm in vx-delegate when transpose.
std::vector<uint32_t> GetOvxTransposePerm(const std::vector<uint32_t>& perm);
// Convert TfLite axis to OpenVX kind.
inline int32_t ConvertAxis(int32_t axisIn, uint32_t dimNum) {
return dimNum - (axisIn < 0 ? dimNum + axisIn : axisIn) - 1;
}
template <typename T>
std::vector<T> TransposeVec(const std::vector<T>& input,
const std::vector<int>& perm) {
if (input.size() != perm.size()) {
return std::vector<T>();
};
std::vector<T> output(input.size());
for (int i = 0; i < perm.size(); i++) {
output[i] = input[perm[i]];
}
return output;
}
inline int32_t CalcWeightSizeForBilinear(int32_t scale) {
return 2 * scale - scale % 2;
}
inline int32_t CalcPadSizeForBilinear(int32_t scale) { return scale / 2; }
void GenerateWeightsDataForBilinear(float* data,
const std::vector<uint32_t>& weight_shape,
uint32_t scale_w,
uint32_t scale_h);
void GenerateWeightDataForNearest(float* data,
const std::vector<uint32_t>& weight_shape);
template <typename T>
inline void Quantize(const std::vector<float>& data, float scale,
int32_t zero_point, std::vector<T>& quant_data) {
for (const auto& f : data) {
quant_data.push_back(static_cast<T>(std::max<float>(
std::numeric_limits<T>::min(),
std::min<float>(std::numeric_limits<T>::max(),
std::round(zero_point + (f / scale))))));
}
}
} // namespace utils
} // namespace delegate
} // namespace vx
#endif /* TENSORFLOW_LITE_DELEGATES_VX_DELEGAGE_UTILS_H_ */