forked from foamliu/Scene-Understanding
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
100 lines (75 loc) · 2.91 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import multiprocessing
import os
import random
import cv2 as cv
import keras.backend as K
import numpy as np
from tensorflow.python.client import device_lib
from config import num_classes, crop_size, folder_rgb_image, seg_path, colors, img_rows, img_cols
prob = np.load('data/prior_prob.npy')
median = np.median(prob)
factor = (median / prob).astype(np.float32)
def categorical_crossentropy_with_class_rebal(y_true, y_pred):
y_true = K.reshape(y_true, (-1, num_classes))
y_pred = K.reshape(y_pred, (-1, num_classes))
idx_max = K.argmax(y_true, axis=1)
weights = K.gather(factor, idx_max)
weights = K.reshape(weights, (-1, 1))
# multiply y_true by weights
y_true = y_true * weights
cross_ent = K.categorical_crossentropy(y_pred, y_true)
cross_ent = K.mean(cross_ent, axis=-1)
return cross_ent
# getting the number of GPUs
def get_available_gpus():
local_device_protos = device_lib.list_local_devices()
return [x.name for x in local_device_protos if x.device_type == 'GPU']
# getting the number of CPUs
def get_available_cpus():
return multiprocessing.cpu_count()
def draw_str(dst, target, s):
x, y = target
cv.putText(dst, s, (x + 1, y + 1), cv.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 0), thickness=2, lineType=cv.LINE_AA)
cv.putText(dst, s, (x, y), cv.FONT_HERSHEY_PLAIN, 1.0, (255, 255, 255), lineType=cv.LINE_AA)
def get_image(name):
image_path = os.path.join('data', name)
image_path = os.path.join(image_path, folder_rgb_image)
image_name = [f for f in os.listdir(image_path) if f.endswith('.jpg')][0]
image_path = os.path.join(image_path, image_name)
image = cv.imread(image_path)
return image
def get_category(id):
filename = os.path.join(seg_path, '{}.png'.format(id))
category = cv.imread(filename, 0)
return category
def to_bgr(category):
h, w = category.shape[:2]
ret = np.zeros((h, w, 3), np.float32)
for r in range(h):
for c in range(w):
color_id = category[r, c]
# print("color_id: " + str(color_id))
ret[r, c, :] = colors[color_id]
ret = ret.astype(np.uint8)
return ret
def safe_crop(mat, x, y):
if len(mat.shape) == 2:
ret = np.zeros((crop_size, crop_size), np.float32)
interpolation = cv.INTER_NEAREST
else:
ret = np.zeros((crop_size, crop_size, 3), np.float32)
interpolation = cv.INTER_CUBIC
crop = mat[y:y + crop_size, x:x + crop_size]
h, w = crop.shape[:2]
ret[0:h, 0:w] = crop
if crop_size != (img_rows, img_cols):
ret = cv.resize(ret, dsize=(img_rows, img_cols), interpolation=interpolation)
ret = ret.astype(np.uint8)
return ret
def random_crop(image, category):
height, width = image.shape[:2]
x = random.randint(0, max(0, width - crop_size))
y = random.randint(0, max(0, height - crop_size))
image = safe_crop(image, x, y)
category = safe_crop(category, x, y)
return image, category