forked from CPJKU/madmom
-
Notifications
You must be signed in to change notification settings - Fork 1
/
CRFBeatDetector
executable file
·110 lines (84 loc) · 3.63 KB
/
CRFBeatDetector
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
#!/usr/bin/env python
# encoding: utf-8
"""
CRFBeatDetector beat tracking algorithm.
"""
from __future__ import absolute_import, division, print_function
import argparse
from madmom.audio import SignalProcessor
from madmom.features import (ActivationsProcessor, CRFBeatDetectionProcessor,
RNNBeatProcessor, TempoEstimationProcessor)
from madmom.io import write_beats
from madmom.processors import IOProcessor, io_arguments
def main():
"""CRFBeatDetector"""
# define parser
p = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description='''
The CRFBeatDetector program detects all beats in an audio file according to
the method described in:
"Probabilistic extraction of beat positions from a beat activation
function"
Filip Korzeniowski, Sebastian Böck and Gerhard Widmer.
In Proceedings of the 15th International Society for Music Information
Retrieval Conference (ISMIR), 2014.
Instead of using the auto-correlation method to determine the dominant
interval, a new method based on comb filters is used to get multiple tempo
hypotheses.
"Accurate Tempo Estimation based on Recurrent Neural Networks and
Resonating Comb Filters"
Sebastian Böck, Florian Krebs and Gerhard Widmer.
Proceedings of the 16th International Society for Music Information
Retrieval Conference (ISMIR), 2015.
This program can be run in 'single' file mode to process a single audio
file and write the detected beats to STDOUT or the given output file.
$ CRFBeatDetector single INFILE [-o OUTFILE]
If multiple audio files should be processed, the program can also be run
in 'batch' mode to save the detected beats to files with the given suffix.
$ CRFBeatDetector batch [-o OUTPUT_DIR] [-s OUTPUT_SUFFIX] FILES
If no output directory is given, the program writes the files with the
detected beats to the same location as the audio files.
The 'pickle' mode can be used to store the used parameters to be able to
exactly reproduce experiments.
''')
# version
p.add_argument('--version', action='version',
version='CRFBeatDetector.2016')
# input/output arguments
io_arguments(p, output_suffix='.beats.txt')
ActivationsProcessor.add_arguments(p)
# signal processing arguments
SignalProcessor.add_arguments(p, norm=False, gain=0)
# beat tracking arguments
TempoEstimationProcessor.add_arguments(p, method='comb', min_bpm=20,
max_bpm=240, act_smooth=0.09,
hist_smooth=7, alpha=0.79)
CRFBeatDetectionProcessor.add_arguments(p)
# parse arguments
args = p.parse_args()
# set immutable arguments
args.fps = 100
# print arguments
if args.verbose:
print(args)
# input processor
if args.load:
# load the activations from file
in_processor = ActivationsProcessor(mode='r', **vars(args))
else:
# use a RNN to predict the beats
in_processor = RNNBeatProcessor(**vars(args))
# output processor
if args.save:
# save the RNN beat activations to file
out_processor = ActivationsProcessor(mode='w', **vars(args))
else:
# detect the beats with a CRF and output them
beat_processor = CRFBeatDetectionProcessor(**vars(args))
out_processor = [beat_processor, write_beats]
# create an IOProcessor
processor = IOProcessor(in_processor, out_processor)
# and call the processing function
args.func(processor, **vars(args))
if __name__ == "__main__":
main()