Sample Color-Magnitude Diagram
Import the functions necessary for the code:
%run runaway_functionsv2
%matplotlib qt
This also imports a list of young open clusters from (based on Dias+ 2021, Gaia DR2):
display(cluster_list)
Cluster | RA_ICRS | DE_ICRS | r50 | Diameter | r50_table2 | N | pmRA | e_pmRA | pmDE | e_pmDE | Plx | e_Plx | RV | e_RV | NRV | Dist | e_Dist | logage | e_logage | __Fe_H_ | e__Fe_H_ | Av | e_Av | FileName | SimbadName | _RA.icrs | _DE.icrs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
deg | deg | deg | mas / yr | mas / yr | mas / yr | mas / yr | mas | mas | km / s | km / s | pc | pc | log(yr) | log(yr) | mag | mag | deg | deg | |||||||||
str16 | float64 | float64 | float32 | float64 | float64 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | float64 | float32 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | str30 | str31 | float64 | float64 |
ASCC_107 | 297.1623 | 22.0071 | 0.156 | 20.88 | 0.174 | 59 | -0.144 | 0.135 | -5.158 | 0.141 | 1.118 | 0.055 | -- | -- | -- | 864 | 30 | 7.440 | 0.121 | 0.353 | 0.103 | 1.372 | 0.129 | clusters1/ASCC_107.dat | [KPR2005] 107 | 297.1623 | 22.0071 |
ASCC_114 | 324.9790 | 53.9990 | 0.180 | 25.92 | 0.216 | 149 | -3.754 | 0.210 | -3.435 | 0.145 | 1.063 | 0.039 | -- | -- | -- | 911 | 12 | 7.632 | 0.271 | 0.035 | 0.078 | 1.216 | 0.091 | clusters1/ASCC_114.dat | [KPR2005] 114 | 324.9790 | 53.9990 |
ASCC_127 | 347.1807 | 64.9151 | 0.541 | 75.24 | 0.627 | 113 | 7.490 | 0.261 | -1.781 | 0.319 | 2.618 | 0.080 | -11.267 | 2.676 | 16 | 365 | 10 | 7.496 | 0.131 | 0.152 | 0.115 | 0.668 | 0.080 | clusters1/ASCC_127.dat | [KPR2005] 127 | 347.1806 | 64.9151 |
ASCC_13 | 78.3057 | 44.4212 | 0.564 | 73.08 | 0.609 | 110 | -0.477 | 0.111 | -1.737 | 0.108 | 0.899 | 0.076 | -- | -- | -- | 1066 | 26 | 7.615 | 0.098 | -0.075 | 0.078 | 0.915 | 0.027 | clusters1/ASCC_13.dat | [KPR2005] 13 | 78.3057 | 44.4212 |
ASCC_16 | 81.2025 | 1.6256 | 0.367 | 45.12 | 0.376 | 207 | 1.363 | 0.280 | 0.002 | 0.274 | 2.844 | 0.113 | 21.308 | 1.696 | 12 | 348 | 3 | 7.088 | 0.061 | -0.062 | 0.069 | 0.224 | 0.045 | clusters1/ASCC_16.dat | [KPR2005] 16 | 81.2025 | 1.6256 |
ASCC_19 | 82.0035 | -1.9617 | 0.613 | 72.6 | 0.605 | 173 | 1.112 | 0.263 | -1.303 | 0.241 | 2.756 | 0.088 | 23.576 | 2.719 | 10 | 356 | 2 | 7.139 | 0.030 | 0.076 | 0.077 | 0.189 | 0.043 | clusters1/ASCC_19.dat | [KPR2005] 19 | 82.0035 | -1.9617 |
ASCC_21 | 82.1423 | 3.4771 | 0.419 | 49.2 | 0.41 | 102 | 1.381 | 0.292 | -0.610 | 0.237 | 2.893 | 0.132 | 15.313 | 3.818 | 8 | 343 | 5 | 7.102 | 0.038 | -0.008 | 0.029 | 0.236 | 0.048 | clusters1/ASCC_21.dat | [KPR2005] 21 | 82.1423 | 3.4771 |
ASCC_32 | 105.7112 | -26.5758 | 0.646 | 78.72 | 0.656 | 255 | -3.317 | 0.232 | 3.475 | 0.126 | 1.240 | 0.067 | 34.607 | 4.624 | 10 | 792 | 11 | 7.432 | 0.022 | -0.003 | 0.048 | 0.220 | 0.019 | clusters1/ASCC_32.dat | [KPR2005] 32 | 105.7112 | -26.5758 |
ASCC_67 | 175.2892 | -60.9906 | 0.165 | 21.96 | 0.183 | 46 | -6.775 | 0.064 | 0.925 | 0.059 | 0.482 | 0.026 | -- | -- | -- | 1921 | 89 | 7.483 | 0.227 | 0.215 | 0.095 | 0.810 | 0.044 | clusters1/ASCC_67.dat | [KPR2005] 67 | 175.2893 | -60.9906 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
UPK_540 | 114.5354 | -58.4348 | 0.766 | 98.64 | 0.822 | 48 | -4.815 | 0.212 | 7.661 | 0.210 | 2.663 | 0.097 | 14.456 | 3.188 | 3 | 365 | 4 | 7.513 | 0.043 | -0.008 | 0.070 | 0.448 | 0.071 | clusters1/UPK_540.dat | UPK 540 | 114.5354 | -58.4348 |
UPK_604 | 224.3164 | -59.8095 | 0.260 | 42.36 | 0.353 | 43 | -4.548 | 0.144 | -3.711 | 0.199 | 1.307 | 0.079 | -- | -- | -- | 745 | 9 | 7.113 | 0.492 | -0.209 | 0.314 | 1.773 | 0.417 | clusters1/UPK_604.dat | UPK 604 | 224.3164 | -59.8095 |
UPK_606 | 216.1298 | -46.3629 | 0.716 | 93.84 | 0.782 | 46 | -20.147 | 0.688 | -16.551 | 0.686 | 5.882 | 0.184 | 10.435 | 2.725 | 7 | 167 | 2 | 7.231 | 0.142 | -0.052 | 0.175 | 0.133 | 0.284 | clusters1/UPK_606.dat | UPK 606 | 216.1299 | -46.3628 |
UPK_62 | 289.7268 | 20.8263 | 0.110 | 13.92 | 0.116 | 33 | -0.452 | 0.111 | -5.418 | 0.128 | 1.075 | 0.056 | -- | -- | -- | 885 | 21 | 7.039 | 0.246 | 0.021 | 0.254 | 3.421 | 0.257 | clusters1/UPK_62.dat | UPK 62 | 289.7268 | 20.8263 |
UPK_621 | 237.1990 | -54.3853 | 0.425 | 56.52 | 0.471 | 57 | -2.471 | 0.150 | -3.101 | 0.100 | 1.126 | 0.058 | -- | -- | -- | 878 | 32 | 7.559 | 0.229 | 0.150 | 0.134 | 0.942 | 0.206 | clusters1/UPK_621.dat | UPK 621 | 237.1990 | -54.3853 |
UPK_640 | 250.4137 | -39.5740 | 1.231 | 163.32 | 1.361 | 540 | -12.014 | 0.917 | -21.350 | 0.779 | 5.666 | 0.239 | 1.174 | 2.002 | 50 | 173 | 1 | 7.379 | 0.091 | 0.149 | 0.102 | 0.189 | 0.101 | clusters1/UPK_640.dat | UPK 640 | 250.4138 | -39.5739 |
vdBergh_130 | 304.4624 | 39.3404 | 0.049 | 5.88 | nan | 62 | -3.609 | 0.308 | -5.075 | 0.292 | 0.521 | 0.154 | -- | -- | -- | 1456 | 240 | 6.974 | 0.091 | -0.029 | 0.163 | 2.356 | 0.042 | clusters2/vdBergh_130.dat | Cl VDB 130 | 304.4624 | 39.3404 |
vdBergh_80 | 97.7471 | -9.6215 | 0.151 | 17.16 | 0.143 | 60 | -3.285 | 0.430 | 0.481 | 0.361 | 1.026 | 0.112 | -- | -- | -- | 947 | 2 | 6.790 | 0.046 | -0.148 | 0.091 | 1.726 | 0.219 | clusters1/vdBergh_80.dat | Cl VDB 80 | 97.7471 | -9.6215 |
vdBergh_85 | 101.7288 | 1.3329 | 0.045 | 4.8 | 0.04 | 29 | -0.973 | 0.147 | 0.345 | 0.164 | 0.550 | 0.049 | -- | -- | -- | 1720 | 167 | 7.104 | 0.125 | -0.055 | 0.124 | 1.206 | 0.270 | clusters1/vdBergh_85.dat | Cl VDB 85 | 101.7288 | 1.3329 |
vdBergh_92 | 106.0426 | -11.4884 | 0.114 | 13.44 | 0.112 | 154 | -4.539 | 0.219 | 1.607 | 0.211 | 0.834 | 0.091 | 27.580 | 6.680 | 2 | 1114 | 42 | 6.749 | 0.074 | 0.025 | 0.087 | 0.984 | 0.062 | clusters1/vdBergh_92.dat | Cl VDB 92 | 106.0426 | -11.4884 |
using the get_cluster
function from the runaway_functions.py
, with the cluster_name
as the input, we obtain the parameters of the cluster.
example usage:
cluster_name = 'ASCC_21'
import os
from astropy.table import Table, Column
from runaway_functions import get_cluster
cluster = get_cluster(cluster_name)
display(cluster)
This imports all the details for the cluster. Various parameters of the cluster can be accessed:
- Name
- Diameter (r50 Diameter: Diameter within which 50% of the cluster members lie)
- Number of Cluster members etc. All parameters can be accessed together by:
cluster_name = 'ASCC_21'
cluster = Cluster(cluster_name)
cluster.all
Row index=0
Cluster | RA_ICRS | DE_ICRS | r50 | Diameter | r50_table2 | N | pmRA | e_pmRA | pmDE | e_pmDE | Plx | e_Plx | RV | e_RV | NRV | Dist | e_Dist | logage | e_logage | __Fe_H_ | e__Fe_H_ | Av | e_Av | FileName | SimbadName | _RA.icrs | _DE.icrs |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
deg | deg | deg | mas / yr | mas / yr | mas / yr | mas / yr | mas | mas | km / s | km / s | pc | pc | log(yr) | log(yr) | mag | mag | deg | deg | |||||||||
str16 | float64 | float64 | float32 | float64 | float64 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | float64 | float32 | int16 | int16 | int16 | float32 | float32 | float32 | float32 | float32 | float32 | str30 | str31 | float64 | float64 |
ASCC_21 | 82.1423 | 3.4771 | 0.419 | 49.2 | 0.41 | 102 | 1.381 | 0.292 | -0.610 | 0.237 | 2.893 | 0.132 | 15.313 | 3.818 | 8 | 343 | 5 | 7.102 | 0.038 | -0.008 | 0.029 | 0.236 | 0.048 | clusters1/ASCC_21.dat | [KPR2005] 21 | 82.1423 | 3.4771 |
Using the calculate_search_arcmin
function from runaway_functions, calculate the region to be searched around the cluster. by default it is
cluster.calculate_search_arcmin()
We can also visualize this search region using:
cluster.plot_search_region()
Using this as the search radius for a conic search around the cluster center coordinates, we find a table of all the stars in the cone.
cluster = Cluster('Ruprecht_170')
cluster.generate_tables()
theoretical_data = theoretical_isochrone(cluster,output="table",printing=False)
fs = cluster.read_table('fs')
runaways = get_runaways(cluster,fs,theoretical_data)
display(runaways)