-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.py
68 lines (48 loc) · 1.93 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
"""
import numpy as np
import pandas as pd
def logloss_mc(y_true, y_prob, epsilon=1e-15):
""" Multiclass logloss. Code from competition benchmark.
"""
# normalize
y_prob = y_prob / y_prob.sum(axis=1).reshape(-1, 1)
y_prob = np.maximum(epsilon, y_prob)
y_prob = np.minimum(1 - epsilon, y_prob)
# get probabilities
y = [y_prob[i, j] for (i, j) in enumerate(y_true)]
ll = - np.mean(np.log(y))
return ll
class Clf:
"""
Base class for our classifiers...
"""
def __init__(self):
self.prefix = ''
def process(self, X_train, y_train, X_valid, y_valid, X_test,
validating=True, testing=True, file_name=None, verbose=1):
"""
"""
if file_name == None:
file_name = str(np.random.randint(1000, 100000))
if validating:
if verbose:
print 'Validating...'
pred_valid = self.train_validate(X_train, y_train, X_valid,
y_valid)
ll = logloss_mc(y_valid, pred_valid)
if verbose:
print '#####################'
print 'Validation log-loss: %s' %(ll)
np.savetxt('./validation/valid_'+self.prefix+'_'+file_name+'_'+str(np.round(ll,decimals=4))+'.csv', pred_valid)
if testing:
if verbose:
print 'Working on test set...'
X = np.vstack((X_train, X_valid))
y = np.hstack((y_train, y_valid))
pred_test = self.train_test(X, y, X_test)
np.savetxt('./test/test_'+self.prefix+'_'+file_name+'.csv', pred_test)
def train_validate(self, X_train, y_train, X_valid, y_valid):
pass
def train_test(self, X, y, X_test):
pass