-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclf_rf_simple.py
64 lines (48 loc) · 1.93 KB
/
clf_rf_simple.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
"""
"""
import sys
import numpy as np
from sklearn.cross_validation import StratifiedKFold
from sklearn.ensemble import RandomForestClassifier
from sklearn.calibration import CalibratedClassifierCV
from classifier import Clf, logloss_mc
class Clf_rf_simple(Clf):
"""
Simple xgboost based classifier.
"""
def __init__(self, num_classes=9):
"""
"""
self.prefix = 'rf_simple'
def train_validate(self, X_train, y_train, X_valid, y_valid):
"""
"""
rf = RandomForestClassifier(n_estimators=1500,
class_weight='auto', max_features=0.8)
rf.fit(X_train, y_train)
yp0 = rf.predict_proba(X_valid)
print logloss_mc(y_valid, yp0)
rf = RandomForestClassifier(n_estimators=1500,
class_weight='auto', max_features=0.8)
cc = CalibratedClassifierCV(base_estimator=rf, method='isotonic',
cv=StratifiedKFold(y_train, 3))
cc.fit(X_train, y_train)
yp1 = cc.predict_proba(X_valid)
print logloss_mc(y_valid, yp1)
y_pred = (yp0 + yp1)/2.
return y_pred
def train_test(self, X, y, X_test):
"""
"""
rf = RandomForestClassifier(n_estimators=1500,
class_weight='auto', max_features=0.8)
rf.fit(X, y)
yp0 = rf.predict_proba(X_test)
rf = RandomForestClassifier(n_estimators=1500,
class_weight='auto', max_features=0.8)
cc = CalibratedClassifierCV(base_estimator=rf, method='isotonic',
cv=StratifiedKFold(y, 3))
cc.fit(X, y)
yp1 = cc.predict_proba(X_test)
y_pred = (yp0 + yp1)/2.
return y_pred