conda create --name local_smooth python==3.9
if poetry
is not installed:
curl -sSL https://install.python-poetry.org | python3 -
poetry config virtualenvs.create false --local
install the project:
conda activate local_smooth
poetry install
chmod +x run.sh
python local_smooth/main.py --config configs/loc_lin_gauss_ker.yml
run all experiments:
./run.sh
Unbiased risk estimate is computed as:
True risk is computed as:
$\mathcal{R}(\hat{f}) = \mathbb{E}((f^)'(x_0) - \hat{f}'(x_0))^2 = ((f^)'(x_0) - \mathcal{S}_1^{\top}\mathbf{f})^2 + \sigma^2 |\mathcal{S}_1|^2$,
where
- Generated data:
- Risk (Locally linear estimate, Gaussian kernel):